精英家教网 > 高中数学 > 题目详情
1.三角形的内角x满足2cos2x+1=0,则角x=60°或120°.

分析 由方程可解得cos2x=-$\frac{1}{2}$,从而解x即可.

解答 解:2cos2x+1=0,
∴cos2x=-$\frac{1}{2}$,
∵x为三角形的内角,
∴0<2x<360°,
∴2x=120°,或2x=240°,
∴x=60°,或x=120°,
故答案为:60°或120°.

点评 本题考查了三角函数的值求法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知向量$\overrightarrow{a}$=(0,-1,1),$\overrightarrow{b}$(4,1,0),|λ$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{29}$且λ>0,则λ=(  )
A.-2B.2C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.化简:$\frac{sin(π-a)•sin(\frac{3π}{2}+a)•tan(-a)}{cos(2π-a)•sin(-a)•tan(π+a)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的离心率e=$\frac{\sqrt{5}}{3}$,且椭圆C1的短轴长为4.
(1)求椭圆C1的方程;
(2)若椭圆C1的左右焦点分别为F1、F2,抛物线C2:y2=2px(p>0)与椭圆C1交于不同两点P、Q.且$\overrightarrow{P{F}_{2}}$=$\overrightarrow{{F}_{2}Q}$.求抛物线C2的准线方程;
(3)若直线l与椭圆C1交于不同两点M、N.且$\overrightarrow{OM}•\overrightarrow{ON}$=0,求证:直线l恒与一个定圆相切,并求出定圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,角A、B、C的对边分别为a、b、c,且满足(2cosA-1)sinB+2cosA=1
(1)求A的大小;
(2)若6b2=a2+3c2,求$\frac{sinB}{sinC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数F(x)=xf(x)(x∈R)在(-∞,0)上是减函数,且f(x)是奇函数,则对任意实数a,下列不等式成立的是(  )
A.F(-$\frac{3}{4}$)≤F(a2-a+1)B.F(-$\frac{3}{4}$)>F(a2-a+1)C.F(-$\frac{3}{4}$)≥F(a2+a+1)D.F(-$\frac{3}{4}$)<F(a2+a+1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设x0为函数f(x)=sinπx的零点,且满足|x0|+f(x0+$\frac{1}{2}$)<33,则这样的零点有65个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设P是双曲线$\frac{{x}^{2}}{4}$-y2=1上的意一点,点P到双曲线的两条渐近线的距离分别为d1,d2,则(  )
A.d1+d2=$\frac{4\sqrt{5}}{5}$B.d1•d2=$\frac{4\sqrt{5}}{5}$C.d1+d2=$\frac{4}{5}$D.d1•d2=$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx,φ(x)=$\frac{a}{x+1}$,a为正常数.
(1)函数y=f(x)的图象上任意不同的两点A(x1,y1),B(x2,y2),线段AB的中点为C(x0,y0),记直线AB的斜率为k,试证明:k>f′(x0);
(2)若g(x)=|f(x)|+φ(x),且对任意的x1,x2∈(0,2],且x1≠x2,都有$\frac{g({x}_{2})-g({x}_{1})}{{x}_{2}-{x}_{1}}$<-1,求a的取值范围.

查看答案和解析>>

同步练习册答案