精英家教网 > 高中数学 > 题目详情

为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行抽样检查,测得身高情况的统计图如图所示:

(1)估计该校男生的人数;
(2)估计该校学生身高在170~185cm的概率;
(3)从样本中身高在180~190cm的男生中任选2人,求至少有1人身高在185~190cm的概率.

(1)400(2)0.5(3)

解析试题分析:(1)由频率分步直方图知样本中男生人数为2+5+13+14+2+4,全校以10%的比例对全校700名学生按性别进行抽样检查,知道每个个体被抽到的概率是0.1,得到分层抽样比例为10%估计全校男生人数.
(2)由图可知样本中身高在170~185cm之间的学生有14+13+4+3+1,样本容量为70,得到样本中学生身高在170~185cm之间的频率.用样本的频率来估计总体中学生身高在170~180cm之间的概率.
(3)由题意知本题是一个古典概型,通过列举法看出试验发生包含的所有事件数,再从这些事件中找出满足条件的事件数,根据古典概型公式,得到结果.
试题解析:(1)样本中男生人数为40,由分层抽样比例为10%,估计全校男生人数为400.   2分
(2)由统计图知,样本中身高在170~185 cm的学生有14+13+4+3+1=35(人),样本容量为70,所以样本中学生身高在170~185 cm之间的频率f==0.5,故由f估计该校学生身高在170~185 cm的概率P1=0.5  6分
(3)样本中身高在180~185 cm的男生有4人,设其编号为①,②,③,④,
样本中身高在185~190 cm的男生有2人,设其编号为⑤,⑥,
从上述6人中任取2人的树状图为:
故从样本中身高在180~190cm之间的男生中任选2人得所有可能结果数为15   10分
至少有1人身高在185~190cm的可能结果数为9  12分
因此,所求概率P2.  14分
考点:1.频率分布直方图;2.频率与概率的关系;3.古典概型的求法 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

据《中国新闻网》10月21日报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改”引起广泛关注.为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人调查,就是否“取消英语听力”的问题,调查统计的结果如下表:

态度

 

应该取消
应该保留
无所谓
在校学生
2100人
120人
y人
社会人士
600人
x人
z人
已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.05.
(Ⅰ)现用分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?
(Ⅱ)在持“应该保留”态度的人中,用分层抽样的方法抽取6人平均分成两组进行深入交流,求第一组中在校学生人数ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某单位名员工参加“社区低碳你我他”活动.他们的年龄在岁至
之间.按年龄分组:第1组,第,第3组,第,第,得到的频率分布直方图如图所示.下表是年龄的频率分布表.

区间





人数



 
 
(1)求正整数的值;
(2)现要从年龄较小的第组中用分层抽样的方法抽取人,则年龄在第组的人数分别
是多少?
(3)在(2)的条件下,从这人中随机抽取人参加社区宣传交流活动,求恰有人在第组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某社团组织名志愿者利用周末和节假日参加社会公益活动,活动内容是:1.到各社区宣传慰问,倡导文明新风;2.到指定的医院、福利院做义工,帮助那些需要帮助的人.各位志愿者根据各自的实际情况,选择了不同的活动项目,相关的数据如下表所示:

 
宣传慰问
义工
总计
岁至



大于



总计



(1)分层抽样方法在做义工的志愿者中随机抽取名,年龄大于岁的应该抽取几名?
(2)上述抽取的名志愿者中任取名,求选到的志愿者年龄大于岁的人数的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

改革开放以来,我国高等教育事业有了突飞猛进的发展,有人记录了某村2001到2005年五年间每年考入大学的人数,为了方便计算,2001年编号为1,2002年编号为2,……,2005年编号为5,数据如下:

年份(x)
1
2
3
4
5
人数(y)
3
5
8
11
13
(1)从这5年中随机抽取两年,求考入大学的人数至少有年多于10人的概率.
(2)根据这年的数据,利用最小二乘法求出关于的回归方程,并计算第年的估计值。
参考:用最小二乘法求线性回归方程系数公式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

口袋中有n(n∈N)个白球,3个红球.依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X,若P(X=2)=求:
(1)n的值;
(2)X的概率分布与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

从某学校高三年级男生随机抽取若干名测量身高,发现测量数据全部介于155cm和195cm之间且每个男生被抽取到的概率为,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165),┅,第八组[190,195),右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组的频数均为4,第六组,第七组,第八组的频率依次构成等差数列。

(I)补充完整频率分布直方图,并估计该校高三年级全体男生身高不低于180cm的人数;
(II)从最后三组中任取2名学生参加学校篮球队,求他们来自不同组的事件概率。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

从某校高三上学期期末数学考试成绩中,随机抽取了60名学生的成绩得到频率分布直方图如下:

(Ⅰ)根据频率分布直方图,估计该校高三学生本次数学考试的平均分;
(Ⅱ)若用分层抽样的方法从分数在的学生中共抽取3人,该3人中成绩在的有几人?
(Ⅲ)在(Ⅱ)中抽取的3人中,随机抽取2人,求分数在各1人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某市芙蓉社区为了解家庭月均用水量(单位:吨),从社区中随机抽查100户,获得每户2013年3月的用水量,并制作了频率分布表和频率分布直方图(如图).

(Ⅰ)分别求出频率分布表中a、b的值,并估计社区内家庭月用水量不超过3吨的频率;
(Ⅱ)设是月用水量为[0,2)的家庭代表.是月用水量为[2,4]的家庭代表.若从这五位代表中任选两人参加水价听证会,请列举出所有不同的选法,并求家庭代表至少有一人被选中的概率.

查看答案和解析>>

同步练习册答案