分析 先根据约束条件画出可行域,再利用几何意义求最值,z=-2x+y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最小值即可.
解答 解:设x,y满足约束条件:$\left\{{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}}\right.$,
在直角坐标系中画出可行域△ABC,由$\left\{\begin{array}{l}{x+y=1}\\{y=-1}\end{array}\right.$,可得A(2,-1),
所以z=-2x+y的最小值为-5.
故答案为:-5
点评 本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a<b<c | B. | b<a<c | C. | c<a<b | D. | a<c<b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {0,1} | B. | {-1,0} | C. | {-1,0,1} | D. | {0,1,2} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [4-2ln2,+∞) | B. | [1+$\sqrt{e}$,+∞) | C. | [4-2ln2,1+$\sqrt{e}$) | D. | (-∞,1+$\sqrt{e}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com