精英家教网 > 高中数学 > 题目详情

【题目】已知在△ABC中,角A、B、C的对边分别是a、b、c,且2sin2A+3cos(B+C)=0.

(1)求角A的大小;

(2)若△ABC的面积S=,求sinB+sinC的值.

【答案】(1); (2).

【解析】

(1)根据同角三角函数关系得到2(1﹣cos2A)﹣3cosA=0,解出角A的余弦值,进而得到角A;(2)根据三角形的面积公式和余弦定理得到a=,再结合正弦定理得到最终结果.

(1)∵在△ABC中2sin2A+3cos(B+C)=0,

∴2(1﹣cos2A)﹣3cosA=0,

解得cosA=,或cosA=﹣2(舍去),

∵0<A<π,∴A=

(2)∵△ABC的面积S=bcsinA=bc=5,∴bc=20,

再由c=4可得b=5,故b+c=9,由余弦定理可得:

a2=b2+c2﹣2bccosA=(b+c)2﹣3bc=21,∴a=

∴sinB+sinC

∴sinB+sinC的值是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某网站针对“2016年春节放假安排开展网上问卷调查,提出了AB两种放假方案,调查结果如表:(单位:万人)

人群

青少年

中年人

老年人

支持A方案

200

400

800

支持B方案

100

100

n

已知从所有参与调查的人中任选1人是老年人的概率为.

(1)n的值;

(2)从参与调查的老年人中,用分层抽样的方法抽取6人,在这6人中任意选取2人,求恰好有1支持B方案的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数据是郑州市普通职工个人的年收入,若这个数据的中位数为,平均数为,方差为,如果再加上世界首富的年收入,则这个数据中,下列说法正确的是( )

A.年收入平均数大大增大,中位数一定变大,方差可能不变

B.年收入平均数大大增大,中位数可能不变,方差变大

C.年收入平均数大大增大,中位数可能不变,方差也不变

D.年收入平均数可能不变,中位数可能不变,方差可能不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)若在区间存在一个,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,则称点为平面上单调格点:设

求从区域中任取一点,而该点落在区域上的概率;

求从区域中的所有格点中任取一点,而该点是区域上的格点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴长为4,离心率为,斜率不为0的直线l与椭圆恒交于AB两点,且以AB为直径的圆过椭圆的右顶点M

1)求椭圆的标准方程;

2)直线l是否过定点,如果过定点,求出该定点的坐标;如果不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣ax2+bx+c(a,b,c∈R).

(1)若函数f(x)在x=﹣1和x=3处取得极值,试求a,b的值;

(2)在(1)的条件下,当x∈[﹣2,6]时,f(x)<2|c|恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某投资公司计划在甲、乙两个互联网创新项目上共投资1200万元,每个项目至少要投资300万元.根据市场分析预测:甲项目的收益与投入满足,乙项目的收益与投入满足.设甲项目的投入为.

1)求两个项目的总收益关于的函数.

2)如何安排甲、乙两个项目的投资,才能使总收益最大?最大总收益为多少?(注:收益与投入的单位都为万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象过点,且在点处的切线斜率为8

1)求的值;

2)求函数的单调区间;

3)求函数在区间上的最大值与最小值.

查看答案和解析>>

同步练习册答案