精英家教网 > 高中数学 > 题目详情

【题目】如图,棱长为1(单位:)的正方体木块经过适当切割,得到几何体,已知几何体由两个底面相同的正四棱锥组成,底面平行于正方体的下底面,且各顶点均在正方体的面上,则几何体体积的取值范围是________(单位:).

【答案】

【解析】

根据图形可知几何体体积由正方形面积来决定,根据截面正方形可知当为四边中点时,面积最小;为正方形四个顶点时,面积最大,从而得到面积的取值范围;利用棱锥的体积公式可求得几何体的体积的取值范围.

由题意知,几何体中两个正四棱锥的高均为,则几何体体积取值范围由正方形的面积来决定

底面平行于正方体底面,则可作所在截面的平面图如下:

由正方形对称性可知,当为四边中点时,取最小值;当为正方形四个顶点时,取最大值;

几何体体积:

本题正确结果:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若关于x的不等式xex﹣2ax+a<0的非空解集中无整数解,则实数a的取值范围是(
A.[
B.[
C.[ ,e]
D.[ ,e]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司在迎新年晚会上举行抽奖活动,有甲,乙两个抽奖方案供员工选择. 方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率均为 ,第一次抽奖,若未中奖,则抽奖结束,若中奖,则通过抛一枚质地均匀的硬币,决定是否继续进行第二次抽奖,规定:若抛出硬币,反面朝上,员工则获得500元奖金,不进行第二次抽奖;若正面朝上,员工则须进行第二次抽奖,且在第二次抽奖中,若中奖,则获得1000元;若未中奖,则所获得奖金为0元.
方案乙:员工连续三次抽奖,每次中奖率均为 ,每次中奖均可获得奖金400元.
(Ⅰ)求某员工选择方案甲进行抽奖所获奖金X(元)的分布列;
(Ⅱ)试比较某员工选择方案乙与选择方案甲进行抽奖,哪个方案更划算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若如图所示的程序框图输出的S是126,则n条件为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直棱柱中,已知,设中点为中点为

Ⅰ)求证:平面

Ⅱ)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面为矩形,测棱底面,点的中点,作


Ⅰ)求证:平面平面

Ⅱ)求证:平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,四边形ABCD是矩形,E,M分别是AD,PD的中点,PE⊥BE,PA=PD=AD=2,AB=.

(1)求证:PB∥平面MAC.

(2)求证:平面MAC⊥平面PBE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图象向左平移个单位长度,再向上平移1个单位长度,得到函数gx)的图象,则函数gx)具有性质_____.(填入所有正确结论的序号)

①最大值为,图象关于直线对称;

②图象关于y轴对称;

③最小正周期为π

④图象关于点对称.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列的前项和为,公比

(1)求等比数列的通项公式;

(2)设,求的前项和

【答案】(1)(2)

【解析】

1)将已知两式作差,利用等比数列的通项公式,可得公比,由等比数列的求和可得首项,进而得到所求通项公式;(2)求得bnn,由裂项相消求和可得答案.

(1)等比数列的前项和为,公比①,

②.

②﹣①,得,则

,所以

因为,所以

所以

所以

(2)

所以前项和

【点睛】

裂项相消法适用于形如(其中是各项均不为零的等差数列,c为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和,还有一类隔一项的裂项求和,如.

型】解答
束】
22

【题目】已知函数的图象上有两点.函数满足,且

(1)求证:

(2)求证:

(3)能否保证中至少有一个为正数?请证明你的结论.

查看答案和解析>>

同步练习册答案