精英家教网 > 高中数学 > 题目详情

设正数数列{an}的前n项和为Sn,且数学公式,(n∈N*).
(Ⅰ)试求a1,a2,a3
(Ⅱ)猜想an的通项公式,并用数学归纳法证明.

解:(I)∵
∴n=1时,,∴a1=±1,∵a1>0,∴a1=1
n=2时,,∴,∵a2>0,∴
n=3时,,∴,∵a3>0,∴
(II)猜想
下用数学归纳法证明:
①n=1时,a1=1,满足
②假设当n=k(k≥1)时,结论成立,即,则当n=k+1时,有

解方程得,即当n=k+1时,结论也成立
由①②可知,猜想成立
分析:(I)由,n分别取1,2,3,代入计算,即可求得结论;
(II)猜想,用数学归纳法证明的关键是n=k+1时,变形利用归纳假设.
点评:本题考查数列递推式,考查数列的通项,考查数学归纳法的运用,掌握数学归纳法的证题步骤是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设正数数列{an}的前n项之和是bn,数列{bn}前n项之积是cn,且bn+cn=1,则数列{
1an
}
中最接近108的项是第
10
10
项.

查看答案和解析>>

科目:高中数学 来源: 题型:

设正数数列{an}的前n项和为Sn,且Sn=
1
2
(an+
1
an
)
,(n∈N*).
(Ⅰ)试求a1,a2,a3
(Ⅱ)猜想an的通项公式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

设正数数列{an}的前n项和是bn,数列{bn}的前n项之积是cn,且bn+cn=1(n∈N*),则{
1an
}
的前10项之和等于
440
440

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•嘉定区一模)设正数数列{an}的前n项和为Sn,且对任意的n∈N*,Sn是an2和an的等差中项.
(1)求数列{an}的通项公式;
(2)在集合M={m|m=2k,k∈Z,且1000≤k<1500}中,是否存在正整数m,使得不等式Sn-1005>
a
2
n
2
对一切满足n>m的正整数n都成立?若存在,则这样的正整数m共有多少个?并求出满足条件的最小正整数m的值;若不存在,请说明理由;
(3)请构造一个与数列{Sn}有关的数列{un},使得
lim
n→∞
(u1+u2+…+un)
存在,并求出这个极限值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设正数数列{an}的前n项之和为bn,数列{bn}的前n项之和为cn,且bn+cn=1,则|c100-a100|=
1
1

查看答案和解析>>

同步练习册答案