精英家教网 > 高中数学 > 题目详情
18.已知函数$f(x)=\left\{{\begin{array}{l}{(1-a)x+3a,x<e}\\{lnx,x≥e}\end{array}}\right.$(e为自然对数的底)的值域为R,则实数a的取值范围是(  )
A.$[\frac{e}{e-3},1]$B.$[\frac{e}{e-3},1)$C.$[\frac{1-e}{3-e},1]$D.$[\frac{1-e}{3-e},1)$

分析 若函数f(x)的值域为R,则x<e时,f(x)=(1-a)x+3a的值域B应满足B?(-∞,1),即$\left\{\begin{array}{l}1-a>0\\(1-a)e+3a≥1\end{array}\right.$,解得答案.

解答 解:当x≥e时,f(x)=lnx≥1,
若函数f(x)的值域为R,
则x<e时,f(x)=(1-a)x+3a的值域B应满足B?(-∞,1),
即$\left\{\begin{array}{l}1-a>0\\(1-a)e+3a≥1\end{array}\right.$,
解得:a∈$[\frac{1-e}{3-e},1)$,
故选:D

点评 本题考查的知识点是分段函数的应用,函数的值域,分类讨论思想,集合思想,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.直线过(-1,3)且在x,y轴上的截距的绝对值相等,则直线方程为3x+y=0、x-y+4=0,或x+y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.由等式${x^3}+{λ_1}{x^2}+{λ_2}x+{λ_3}={(x+1)^3}+{μ_1}{(x+1)^2}+{μ_2}(x+1)+{μ_3}$定义映射f:(λ1,λ2,λ3)=(μ1,μ2,μ3),则f(1,2,3)=(-2,3,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.作出下列函数的图象:
(1)f(x)=|sinx|,x∈[-π,2π];
(2)f(x)=sin|x|,x∈[-2π,2π].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)是定义在[-5,5]上的奇函数,当x∈(0.5]时,f(x)=log2(3x+1)+m.
(1)若m=-1,求函数f(x)的解析式;
(2)若函数f(x)的值域为[-a,a],求实数m的取值范围及正数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.给出下列命题:
①函数$f(x)=\sqrt{1-x}+\sqrt{x-1}$既是奇函数,又是偶函数;
②f(x)=x和$g(x)=\frac{x^2}{x}$为同一函数;
③定义在R上的奇函数f(x)在(-∞,0)上单调递减,则f(x)在(-∞,+∞)上单调递减;
④函数$y=\frac{x}{{2{x^2}+1}}$的值域为$[-\frac{{\sqrt{2}}}{4},\frac{{\sqrt{2}}}{4}]$;
其中正确命题的序号是④.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$y=\sqrt{x+2}•\sqrt{5-x}$的定义域为集合Q,集合P={x|a+1≤x≤2a+3}.
(1)若a=3,求(∁RP)∩Q;
(2)若P∪Q=Q,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.将18m高的旗杆DA直立在地面上,绳子DB、DC分别和杆身成30°和45°的角都在地面上.
(1)求线段DB、DC的长;
(2)求DB、DC在地面上的射影的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知在空间四边形OABC中,OA⊥BC,OB⊥AC,则AB与OC的关系是(  )
A.平行B.夹角为60°C.垂直D.不确定

查看答案和解析>>

同步练习册答案