分析 (1)若直线l与圆O交于不同的两点A,B,当$∠AOB=\frac{π}{2}$时,点O到l的距离$d=\frac{{\sqrt{2}}}{2}r$,由此求k的值;
(2)求出直线CD的方程,即可,探究:直线CD是否过定点;
(3)求出四边形EGFH的面积,利用配方法,求出最大值.
解答 解:(1)∵$∠AOB=\frac{π}{2}$,∴点O到l的距离$d=\frac{{\sqrt{2}}}{2}r$,∴$\frac{2}{{\sqrt{{k^2}+1}}}=\frac{{\sqrt{2}}}{2}•\sqrt{2}⇒k±\sqrt{3}$.
(2)由题意可知:O,P,C,D四点共圆且在以OP为直径的圆上,设$P({t,\frac{1}{2}t-2})$.
其方程为:$x({x-t})+y({y-\frac{1}{2}t+2})=0$,
即${x^2}-tx+{y^2}-({\frac{1}{2}t-2})y=0$,
又C、D在圆O:x2+y2=2上,
∴${l_{CD}}:tx+({\frac{1}{2}t-2})y-2=0$,即$({x+\frac{y}{2}})t-2y-2=0$,
由$\left\{{\begin{array}{l}{x+\frac{y}{2}=0}\\{2y+2=0}\end{array}}\right.$,得$\left\{{\begin{array}{l}{x=\frac{1}{2}}\\{y=-1}\end{array}}\right.$
∴直线CD过定点$({\frac{1}{2},-1})$.
(3)设圆心O到直线EF、GH的距离分别为d1,d2.
则$d_1^2+d_2^2={|{OM}|^2}=\frac{3}{2}$,
∴$|{EF}|=2\sqrt{{r^2}-d_1^2}=2\sqrt{12-d_1^2}\;\;|{GH}|=2\sqrt{{r^2}-d_2^2}=2\sqrt{2-d_2^2}$$S=\frac{1}{2}|{EF}||{GH}|=2\sqrt{({2-d_1^2})({2-d_2^2})}=\sqrt{-4d_2^4+6d_2^2+4}=\sqrt{-4{{({d_2^2-\frac{3}{4}})}^2}+\frac{25}{4}}≤\frac{5}{2}$,
当且仅当$d_2^2=\frac{3}{4}$,即${d_1}={d_2}=\frac{{\sqrt{3}}}{2}$时,取“=”
∴四边形EGFH的面积的最大值为$\frac{5}{2}$.
点评 本题考查直线与圆的位置关系,考查四边形面积的计算,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | f(x1)<f(x2) | B. | f(x1)>f(x2) | ||
C. | f(x1)=f(x2) | D. | f(x1)<f(x2)和f(x1)=f(x2)都有可能 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | $\frac{1}{2}$ | C. | $-\frac{1}{2}$ | D. | -2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com