精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱中,,侧面是边长为2的正方形,点分别是线段的中点,且.

1)证明:平面平面

2)若,求直线与平面所成角的正弦值.

【答案】1)证明见解析;(2.

【解析】

1)取中点,连接,由正方形性质及条件,可证明平面,从而可得,进而证明平面,即可由面面垂直的判定定理证明平面平面

2)结合(1)及线面垂直关系,可得.为坐标原点,分别为轴正方向建立空间直角坐标系,写出各个点的坐标,并求得平面的法向量,即可由线面夹角的向量求法求得直线与平面所成角的正弦值.

1)证明:取中点,连接,如下图所示:

三棱柱中, 中点,

是为正方形,点分别是线段的中点,中点,

所以

又因为,且

所以平面

又因为平面

所以

相交,则平面

又因为平面

所以平面平面.

2)因为,平面平面,平面平面.

所以平面

.

又因为

所以平面,则.

所以.

平面

所以平面

从而.

为坐标原点,分别为轴正方向,建立如下图所示的空间直角坐标系:

.

所以.

设平面的法向量为.

,即,令,解得

设直线与平面所成的角为

由直线与平面夹角的求法可得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥EABCD的侧棱DE与四棱锥FABCD的侧棱BF都与底面ABCD垂直,ADCDABCDAB3AD4AE5

1)证明:DF∥平面BCE

2)求A到平面BEDF的距离,并求四棱锥ABEDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知F是抛物线C:的焦点,过E(﹣l,0)的直线与抛物线分別交于A,B两点(点A,B在x轴的上方).

(1)设直线AF,BF的斜率分別为,证明:

(2)若ABF的面积为4,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C)的一个焦点与抛物线的焦点相同,为椭圆的左、右焦点,M为椭圆上任意一点,若的面积最大值为1.

1)求椭圆C的方程;

2)设不过原点的直线l与椭圆C交于不同的两点AB,若直线l的斜率是直线斜率的等比中项,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的左、右焦点分别为,过作一条直线与其两条渐近线交于两点,若为等腰直角三角形,记双曲线的离心率为,则______________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,曲线C的参数方程是,(为参数).

(1)求直线被曲线C截得的弦长;

(2)从极点作曲线C的弦,求各弦中点轨迹的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,满足.数列满足,且

(1)求数列的通项公式;

(2)若,数列的前项和为,对任意的,都有,求实数的取值范围;

(3)是否存在正整数,使)成等差数列,若存在,求出所有满足条件的,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)已知函数fx)=-2lnxx22axa2,其中a>0.

)设gx)为fx)的导函数,讨论gx)的单调性;

)证明:存在a∈01),使得fx≥0恒成立,且fx)=0在区间(1,+)内有唯一解.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)分别写出直线的普通方程与曲线的直角坐标方程;

(Ⅱ)已知点,直线与曲线相交于两点,若,求的值.

查看答案和解析>>

同步练习册答案