【题目】定义在上的奇函数有最小正周期4,且时,
(1)判断并证明在上的单调性,并求在上的解析式;
(2)当为何值时,关于的方程在上有实数解?
科目:高中数学 来源: 题型:
【题目】已知定圆:,其圆心为,点为圆所在平面内一定点,点为圆上一个动点,若线段的中垂线与直线交于点,则动点的轨迹可能为______.(写出所有正确的序号)(1)椭圆;(2)双曲线;(3)抛物线;(4)圆;(5)直线;(6)一个点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点为且过点椭圆C与轴的交点为A、B(点A位于点B的上方),直线与椭圆C交于不同的两点M、N(点M位于点N的上方).
(1)求椭圆C的方程;
(2)求△OMN面积的最大值;
(3)求证:直线AN和直线BM交点的纵坐标为常值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中:
①若,满足,则的最大值为;
②若,则函数的最小值为
③若,满足,则的最小值为
④函数的最小值为
正确的有__________.(把你认为正确的序号全部写上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C的顶点为坐标原点O,对称轴为x轴,其准线过点.
(1)求抛物线C的方程;
(2)过抛物线焦点F作直线l,使得抛物线C上恰有三个点到直线l的距离都为,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数,.
(1)若函数f(x)在处有极值,求函数f(x)的最大值;
(2)是否存在实数b,使得关于x的不等式在上恒成立?若存在,求出b的取值范围;若不存在,说明理由;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的离心率为,圆与正半轴交于点,圆在点处的切线被椭圆截得的弦长为.
(1)求椭圆的方程;
(2)设圆上任意一点处的切线交椭圆于点、,求证:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com