精英家教网 > 高中数学 > 题目详情
歌德巴赫(Goldbach.C.德.1690-1764)曾研究过“所有形如
1
(n+1)m+1
(m,n为正整数)的分数之和”问题.为了便于表述,引入记号:
n-1φm-1φ
1
(n+1)m+1
=(
1
22
+
1
23
24
+…)+(
1
32
+
33
+
34
+…)+(
1
(n+1)2
+
1
(n+1)3
+
1
(n+1)4
+…)+…写出你对此问题的研究结论:(用数学符号表示).
1
22
+
1
23
24
+…=
1
22
1-
1
2
=
1
2
1
32
+
33
+
34
+…=
1
32
1-
1
3
=
1
2×3

∴∑n-1φm-1φ
1
(n+1)m+1
=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
…=1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知n是正整数,数列{an}的前n项和为Sn,数列{nan}的前n项和为Tn.对任何正整数n,等式Sn=-an+
1
2
(n-3)都成立.
(I)求数列{an}的通项公式;
(II)求Tn
(III)设An=2Tn,Bn=(2n+4)Sn+3,比较An与Bn的大小.

查看答案和解析>>

科目:高中数学 来源:延安模拟 题型:单选题

数列{an}满足a1=1,an+1
1
a2n
+4
=1
(n∈N*),记Sn=a12+a22+…+an2,若S2n+1-Sn
m
30
对n∈N*恒成立,则正整数m的最小值为(  )
A.10B.9C.8D.7

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知公差不为0的等差数列{an}的前n项和为Sn,且满足S5=3a5-2,又a1,a2,a5依次成等比数列,数列{bn}满足b1=-9,bn+1=bn+
k
2
an+1
2
,(n∈N+)其中k为大于0的常数.
(1)求数列{an},{bn}的通项公式;
(2)记数列an+bn的前n项和为Tn,若当且仅当n=3时,Tn取得最小值,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)的定义域为N*,且f(x+1)=f(x)+x,f(1)=0.
(1)求f(x)的解析式.
(2)设an=
1
f(n)
.(n∈N*,n≥2),Sn=a2+a3+a 3+…+an
,问是否存在最大的正整数m,使得对任意的n∈N*均有Sn
m
2012
恒成立?若存在,求出m值;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源:安庆模拟 题型:解答题

已知数列{an} 中,a1=1,a2=
1
4
,且an+1=
(n-1)an
n-an
(n=2,3,4,…)
(1)求a3、a4的值;
(2)设bn=
1
an+1
-1
(n∈N*),试用bn表示bn+1并求{bn} 的通项公式;
(3)设cn=
sin3
cosbn•cosbn+1
(n∈N*),求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

数列{an}的通项公式为an=
1
n
+
n+1
,其前n项之和为10,则在平面直角坐标系中,直线(n+1)x+y+n=0在y轴上的截距为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求和:(a-1)+(a2-2)+…+(an-n),(a≠0)

查看答案和解析>>

科目:高中数学 来源:广州一模 题型:解答题

已知数列{an}的前n项和为Sn,且a1=4,Sn=nan+2-
n(n-1)
2
,(n≥2,n∈N*)

(I)求数列{an}的通项公式;
(II) 已知bn>an,(n≥2,n∈N*),求证:(1+
1
b2b3
)(1+
1
b3b4
)(1+
1
b4b5
)…(1+
1
bnbn+1
3e

查看答案和解析>>

同步练习册答案