精英家教网 > 高中数学 > 题目详情

【题目】已知直角三角形的两条直角边 为斜边上一点,沿将三角形折成直二面角,此时二面角的正切值为,则翻折后的长为( )

A. 2 B. C. D.

【答案】D

【解析】如图,在平面内过作直二面角的棱的垂线交边,则

于是在平面中过作二面角的棱的垂线,垂足为,连接,则为二面角的平面角,且,设,则

如图,设,则,则在直角三角形中, ,又在直角三角形中, 所以,因为二面角为直二面角, 所以,于是,解得. 选D.

解法二:由,翻折后,故

点睛:立体几何中折叠问题,要注重折叠前后垂直关系的变化,不变的垂直关系是解决问题的关键条件.二面角的寻找,主要找面的垂线,即需从线面垂直(本题利用面面垂直性质定理)出发,利用三垂线定理及其逆定理作出二面角的平面角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2﹣3x,则函数g(x)=f(x)﹣x+3的零点的集合为(
A.{1,3}
B.{﹣3,﹣1,1,3}
C.{2﹣ ,1,3}
D.{﹣2﹣ ,1,3}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位小时).

(1)应收集多少位女生样本数据?

(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:,试估计该校学生每周平均体育运动时间超过4小时的概率.

(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时.请完成每周平均体育运动时间与性别的列联表,并判断能否在犯错误的概率不超过0.05的前提下认为该校学生的每周平均体育运动时间与性别有关

男生

女生

每周平均体育运动时间不超过4小时

每周平均体育运动时间超过4小时

合计

300

附:其中.

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位建造一间地面面积为12m2的背面靠墙的矩形小房子,由于地理位置的限制,房子侧面的长度x不得超过am.房屋正面的造价为400元/m2 , 房屋侧面的造价为150元/m2 , 屋顶和地面的造价费用合计为5800元,如果墙高为3m,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)两个共轭复数的差是纯虚数;(2)两个共轭复数的和不一定是实数;(3)若复数a+bi(a,b∈R)是某一元二次方程的根,则a﹣bi是也一定是这个方程的根;(4)若z为虚数,则z的平方根为虚数,
其中正确的个数为(
A.3
B.2
C.1
D.0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在图中,G、H、M、N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH、MN是异面直线的图形有 . (填上所有正确答案的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的图像与的图像关于轴对称,函数,若关于的不等式恒成立,则实数的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg).其频率分布直方图如下:

(1)设两种养殖方法的箱产量相互独立,记A表示事件:“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;

(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:

箱产量<50kg

箱产量≥50kg

旧养殖法

新养殖法

(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解关于x的不等式x2﹣(a+1)x+a>0(其中a∈R)

查看答案和解析>>

同步练习册答案