精英家教网 > 高中数学 > 题目详情

【题目】某校届高三文(1)班在一次数学测验中,全班名学生的数学成绩的频率分布直方图如下,已知分数在的学生数有人.

(1)求总人数和分数在的人数

(2)利用频率分布直方图,估算该班学生数学成绩的众数和中位数各是多少?

(3)现在从比分数在名学生(男女生比例为)中任选人,求其中至多含有名男生的概率.

【答案】(1);(2) ;(3).

【解析】试题分析:(1)根据频率分布图求分数在的频率0.35,根据公式总人数频率=频数,再计算分数在的频率,再根据总人数求分数在的人数;(2)众数是最高的小矩形的底边的中点值,中位数是中位数两边的面积分别是;(3)首先计算分数在115~120的学生有6人,其中男生2人,女生4人,给这6人编号,列举所有任选2人的基本事件的个数,以及其中至多有1名男生的基本事件的个数,并求其概率.

试题解析:(1)分数在内的学生的频率为

所以该班总人数为.

分数在内的学生的频率为:

分数在内的人数为.

(2)由频率直方图可知众数是最高的小矩形底边中点的横坐标,

即为.

设中位数为,∵,∴.

∴众数和中位数分别是 .

(3)由题意分数在内有学生名,其中男生有名.

设女生为,男生为,从名学生中选出名的基本事件为:

种,其中至多有名男生的基本事件共种,

∴所求的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知四棱锥P﹣ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面 ABCD,且PA=AD=DB= ,AB=1,M是PB的中点.
(1)证明:面PAD⊥面PCD;
(2)求AC与PB所成的角;
(3)求平面AMC与平面BMC所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图甲,已知矩形中, 上一点,且,垂足为,现将矩形沿对角线折起,得到如图乙所示的三棱锥.

(Ⅰ)在图乙中,若,求的长度;

(Ⅱ)当二面角等于时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】各项均为正数的数列{an}中,a1=1,Sn是数列{an}的前n项和,对任意n∈N* , 有2Sn=2pan2+pan﹣p(p∈R)
(1)求常数p的值;
(2)求数列{an}的通项公式;
(3)记bn= ,求数列{bn}的前n项和T.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|0<ax+1≤5},B={x|﹣ <x≤2}.
(1)当a=1时,判断集合BA是否成立?
(2)若AB,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为吸引顾客,某公司在商场举办电子游戏活动.对于两种游戏,每种游戏玩一次均会出现两种结果,而且每次游戏的结果相互独立,具体规则如下:玩一次游戏,若绿灯闪亮,获得分,若绿灯不闪亮,则扣除分(即获得分),绿灯闪亮的概率为;玩一次游戏,若出现音乐,获得分,若没有出现音乐,则扣除分(即获得分),出现音乐的概率为.玩多次游戏后累计积分达到分可以兑换奖品.

(1)记为玩游戏各一次所得的总分,求随机变量的分布列和数学期望;

(2)记某人玩次游戏,求该人能兑换奖品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前项n和为Sn , 且3Sn=4an﹣4.又数列{bn}满足bn=log2a1+log2a2+…+log2an
(1)求数列{an}、{bn}的通项公式;
(2)若 ,求使得不等式 恒成立的实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点处的切线与直线垂直(其中为自然对数的底数).

1)求的解析式及单调递减区间;

2)是否存在常数,使得对于定义域内的任意恒成立,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(Ⅰ)命题“ ”为假命题,求实数a的取值范围;
(Ⅱ)若“x2+2x﹣8<0”是“x﹣m>0”的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

同步练习册答案