精英家教网 > 高中数学 > 题目详情
1.已知集合A={x|y=$\sqrt{\frac{6}{x+1}-1}$,集合B={x|y=lg(-x2+2x+3)}.求A∩(∁RB).

分析 根据负数没有平方根求出A中x的范围确定出A,根据负数和0没有对数求出B中x的范围确定出B,找出A与B补集的交集即可.

解答 解:由$\frac{6}{x+1}$-1≥0,化简得$\frac{x-5}{x+1}$≤0,
解得:-1<x≤5,即A={x|-1<x≤5},
由-x2+2x+3>0,
解得:-1<x<3,即B={x|-1<x<3},
∴∁RB={x|x≥3或x≤-1},
则A∩(∁RB)={x|3≤x≤5}.

点评 此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系中,已知△PAB的周长为8,且点A,B的坐标分别为(-1,0),(1,0).
(Ⅰ)试求顶点P的轨迹C1的方程;
(Ⅱ)若动点P1(x1,y1)在曲线C1上,试求动点$Q(\frac{x_1}{3},\frac{y_1}{{2\sqrt{2}}})$的轨迹C2的方程;
(Ⅲ)过点C(3,0)作直线l与曲线C2相交于M,N两点,试探究是否存在直线l,使得点N恰好是线段CM的中点.若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,内角A,B,C所对的边分别为a,b,c,且BC边上的高为$\frac{{\sqrt{3}}}{6}a$,则$\frac{c}{b}$+$\frac{b}{c}$取得最大值时,角A的值为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知f(x)=x3-3x+3+m(m>0).在区间[0,2]上存在三个不同的实数a,b,c,使得以f(a),f(b),f(c)为边长的三角形是直角三角形.则m的取值范围是(  )
A.$(3+4\sqrt{2},+∞)$B.$(2\sqrt{2}-1,+∞)$C.$(0,2\sqrt{2}-1)$D.$(0,3+4\sqrt{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥O-ABCD中,底面ABCD是边长为1的菱形,∠ABC=$\frac{π}{4}$,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点.
(1)证明:直线MN∥平面OCD.
(2)求三棱锥N-CDM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设实数x,y满足约束条件$\left\{\begin{array}{l}2x-y-1≥0\\ x-2y+1≤0\\ x+y-5≤0\end{array}$,则当z=ax+by(a>0,b>0)取得最小值2时,则$\frac{1}{a}+\frac{1}{b}$的最小值是(  )
A.$\frac{{5+2\sqrt{6}}}{2}$B.$5+2\sqrt{6}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=2,AC=BC=1,则异面直线A1B与AC所成角的余弦值是(  )
A.$\frac{{\sqrt{6}}}{5}$B.$\frac{{\sqrt{6}}}{4}$C.$\frac{{\sqrt{6}}}{3}$D.$\frac{{\sqrt{6}}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知等差数列{an}的前n项和为Sn,且3a3=a6+4,则“a2<1”是“S5<10”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列说法正确的是(  )
A.a与|a|是集合A中的两个不同元素
B.方程(x-1)2(x-2)=0的解集有3个元素
C.抛物线y=x2上的所有点组成的集合是有限集
D.不等式x2+1≤0的解集是空集

查看答案和解析>>

同步练习册答案