精英家教网 > 高中数学 > 题目详情
6.解方程:ln($\sqrt{{x}^{2}+1}$+x)+ln($\sqrt{4{x}^{2}+1}$+2x)+3x=0.

分析 构造函数f(x)=ln($\sqrt{{x}^{2}+1}$+x)+x,利用函数的单调性奇偶性的性质进行求解即可.

解答 解:构造函数f(x)=ln($\sqrt{{x}^{2}+1}$+x)+x,
则方程ln($\sqrt{{x}^{2}+1}$+x)+ln($\sqrt{4{x}^{2}+1}$+2x)+3x=0.等价为ln($\sqrt{{x}^{2}+1}$+x)+x+ln($\sqrt{4{x}^{2}+1}$+2x)+2x=0.
即f(x)+f(2x)=0,
∵函数f(x)为奇函数,且在R上为增函数,
∴f(2x)=-f(x)=f(-x),
则2x=-x,解得x=0.
即方程的解为x=0.

点评 本题主要考查函数与方程的应用,根据条件构造函数,利用函数的奇偶性和单调性是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.数列{an}的前n项和为Sn,且Sn=-an+2n,(n∈N*).
(1)证明:数列{an-2}是等比数列,并求数列{an}的通项;
(2)设bn=$\frac{{a}_{n}}{{a}_{n+1}}$+$\frac{{a}_{n+1}}{{a}_{n}}$-2,数列{bn}的前n项和为Tn
①求证:4bn+1<bn
②求证:Tn<$\frac{2}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=mlg$\frac{1-x}{1+x}$+nx+2,若f(lg(log310))=9,则f(lg(lg3))=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.对于任意实数k,直线(2k+2)x-ky-2=0与x2+y2-2x-2y-2=0的位置关系是相交.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.解不等式:5+|x|<2|x|-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}.
(1)若a1=1,an+1=4an+1,求通项公式;
(2)若an=(2n-1)2n-1,求{an}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示为函数f(x)=2sin(ωx+φ)(ω>0,0≤φ≤π)的部分图象,其中A,B两点之间的距离为5.
(1)求函数f(x)的解析式;
(2)判断函数f(x)在区间[$\frac{7}{4}$,$\frac{9}{4}$]上是否存在对称轴,存在求出方程;否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.2015年春节放假安排,农历除夕至正月初六放假,共7天,某单位安排7位员工值班,每人值班1天,每天安排1人,若甲不在除夕值班,乙不在正月初一值班,而且丙和甲在相邻的两天值班,则不同的安排方案共有(  )
A.1440种B.1360种C.1282种D.1128种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知二次函数y=x2-3x+2,则其图象的开口向向上;对称轴方程为直线x=$\frac{3}{2}$;顶点坐标为($\frac{3}{2}$,-$\frac{1}{4}$),与x轴的交点坐标为(1,0),(2,0),最小值为-$\frac{1}{4}$;递增区间为[$\frac{3}{2}$,+∞),递减区间为(-∞,$\frac{3}{2}$].

查看答案和解析>>

同步练习册答案