精英家教网 > 高中数学 > 题目详情
已知在△ABC中,C=
π
3
,AB=6,则△ABC面积的最大值是
 
考点:三角形的面积公式
专题:计算题,解三角形
分析:利用余弦定理,整理后可得a2+b2-ab=36再利用基本不等式求出ab的最大值,然后利用三角形的面积公式表示出三角形ABC的面积,即可求出三角形ABC面积的最大值.
解答: 解:由题意,由余弦定理可得36=a2+b2-2abcos
π
3

∴a2+b2-ab=36
∵a2+b2≥2ab,
∴ab≤36
∴S=
1
2
absin
π
3
≤9
3

∴△ABC面积的最大值是9
3

故答案为:9
3
点评:本题考查余弦定理,考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.
(1)求证:AC1∥平面CDB1
(2)求异面直线AC与BC1所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆的两焦点坐标分别为F1(-
3
,0),F2
3
,0),且椭圆过点P(1,-
3
2
).
(1)求椭圆方程;
(2)若 A为椭圆的左顶点,作AM⊥AN与椭圆交于两点M、N,试问:直线MN是否恒过x轴上的一个定点?若是,求出该点坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y取值如下表:
x014568
y1.31.85.66.17.49.3
从所得散点图中分析可知:y与x线性相关,且
y
=0.95x+a,则x=13时,y=(  )
A、1.45B、13.8
C、13D、12.8

查看答案和解析>>

科目:高中数学 来源: 题型:

甲乙两位同学参加学校安排的3次体能测试,规定按顺序测试,一旦测试合格就不必参加以后的测试,否则3次测试都要参加.甲同学3次测试每次合格的概率组成一个公差为
1
8
的等差数列,他第一次测试合格的概率不超过
1
2
,且他直到第二次测试才合格的概率为
9
32
,乙同学3次测试每次测试合格的概率均为
2
3
,每位同学参加的每次测试是否合格相互独立.
(Ⅰ)求甲同学第一次参加测试就合格的概率P;
(Ⅱ)设甲同学参加测试的次数为m,乙同学参加测试的次数为n,求ξ=m+n的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的不等式2-x2=|x-a|至少有一个负数解,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x2-4x+3,x∈[1,4],则f(x)的最小值为(  )
A、-1B、0C、3D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的顶点A(5,1),AB边上的中线CM所在直线方程为2x-y-5=0,AC边上的高BH所在直线方程为x-2y-5=0.
(1)求AC边所在直线方程;
(2)求顶点C的坐标;
(3)求直线BC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程选做题)曲线C1
x=1+cosθ
y=sinθ
(θ为参数)上的点到曲线C2
x=-2
2
+
1
2
y=1-
1
2
(t为参数)上的点的最近距离为
 

查看答案和解析>>

同步练习册答案