精英家教网 > 高中数学 > 题目详情

【题目】从某高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于之间,将测量结果按如下方式分成6组:第1,第2,…,第6,如图是按上述分组方法得到的频率分布直方图.

1)由频率分布直方图估计该校高三年级男生身高的中位数;

2)在这50名男生身高不低于的人中任意抽取2人,则恰有一人身高在内的概率.

【答案】1.(2

【解析】

1)由频率分布直方图得频率为0.48的频率为0.32,由此能求出中位数.

2)在这50名男生身高不低于的人中任意抽取2人,中的学生人数为4人,中的学生人数为2人,可用列举法求出基本事件总数,恰有一人身高在内包含的基本事件个数,再由概率公式计算出概率.

解:(1)由频率分布直方图得频率为:

的频率为:

∴中位数为:.

2)在这50名男生身高不低于的人中任意抽取2人,

中的学生人数为人,编号为

中的学生人数为人,编号为

任意抽取2人的所有基本事件为共15个,

恰有一人身高在内包含的基本事件有共8个,

∴恰有一人身高在内的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)讨论函数的单调区间;

(Ⅱ)若函数处取得极值,对 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线的方程为,以极点为原点,极轴所在直线为轴建立直角坐标,直线的参数方程为为参数),交于两点.

(1)写出曲线的直角坐标方程和直线的普通方程;

(2)设点;若成等比数列,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为F,过点的直线lE交于AB两点.l过点F时,直线l的斜率为,当l的斜率不存在时,.

1)求椭圆E的方程.

2)以AB为直径的圆是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解一个小水库中养殖的鱼的有关情况,从这个水库中多个不同位置捕捞出100条鱼,称得每条鱼的质量(单位:kg),并将所得数据分组,画出频率分布直方图(如图所示).

1)在下面表格中填写相应的频率;

分组

频率

2)估计数据落在中的概率;

3)将上面捕捞的100条鱼分别作一记分组频率号后再放回水库.几天后再从水库的多处不同位置捕捞出120条鱼,其中带有记号的鱼有6条.请根据这一情况来估计该水库中鱼的总条数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修44:坐标系与参数方程

在以直角坐标原点为极点,的非负半轴为极轴的极坐标系下,曲线的方程是,将向上平移1个单位得到曲线

)求曲线的极坐标方程;

)若曲线的切线交曲线于不同两点,切点为.求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是一块平行四边形园地,经测量,.拟过线段上一点 设计一条直路(点在四边形的边上,不计直路的宽度),将该园地分为面积之比为的左,右两部分分别种植不同花卉.(单位:m.

1)当点与点重合时,试确定点的位置;

2)求关于的函数关系式;

3)试确定点的位置,使直路的长度最短.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆和双曲线的公共焦点,是他们的一个公共点,且,则椭圆和双曲线的离心率的倒数之和的最大值为___.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,过原点O且斜率不为0的直线与椭圆C交于PQ两点.

1)若为椭圆C的一个焦点,求椭圆C的标准方程;

2)若经过椭圆C的右焦点的直线l与椭圆C交于AB两点,四边形OAPB能否为平行四边形?若能,求此时直线OP的方程,若不能,说明理由.

查看答案和解析>>

同步练习册答案