【题目】如图,已知四棱锥的底面是菱形, , , .
(1)求证:平面平面;
(2)求直线与平面所成角的正弦值.
【答案】(1)见解析(2)
【解析】试题分析:(1)取中点,根据平几知识可得,再根据勾股定理可得,最后根据线面垂直判定定理可得结论(2)利用空间向量求线面角,首项根据条件建立恰当直角坐标系,设立各点坐标,利用方程组解平面法向量,再根据向量数量积求直线方向向量与法向量夹角,最后根据线面角与向量夹角互余关系得结果
试题解析:(1)证明:如图,
取中点,连接、、,则和分别是等边三角形、等腰直角三角形.
故, ,且, ,
所以,
故,
所以平面.
又平面,从而平面平面.
(2)如图,建立空间直角坐标系.
, , , , , , ,
设平面的法向量为,则,
令,解得, ,即,
记直线与平面所成角的平面角为,则
即直线与平面所成角的正弦值为.
科目:高中数学 来源: 题型:
【题目】设椭圆E: (a>b>0),其长轴长是短轴长的 倍,过焦点且垂直于x轴的直线被椭圆截得的弦长为2 .
(1)求椭圆E的方程;
(2)设过右焦点F2且与x轴不垂直的直线l交椭圆E于P,Q两点,在线段OF2(O为坐标原点)上是否存在点M(m,0),使得以MP,MQ为邻边的平行四边形是菱形?若存在,求出m的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若集合A={x|kx2﹣2x﹣1=0}只有一个元素,则实数k的取值集合为( )
A.{﹣1}
B.{0}
C.{﹣1,0}
D.(﹣∞,﹣1]∪{0}
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》中有这样一则问题:“今有良马与弩马发长安,至齐,齐去长安三千里,良马初日行一百九十三里,日增一十三里;弩马初日行九十七里,日减半里,良马先至齐,复还迎弩马.”则现有如下说法:
①弩马第九日走了九十三里路;
②良马前五日共走了一千零九十五里路;
③良马和弩马相遇时,良马走了二十一日.
则以上说法错误的个数是( )个
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设[x]表示不超过x的最大整数,如[1]=1,[0.5]=0,已知函数f(x)= ﹣k(x>0),若方程f(x)=0有且仅有3个实根,则实数k的取值范围是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,平面ABC⊥平面BCDE,BC∥DE, ,BE=CD=2,AB⊥BC,M,N分别为DE,AD中点.
(1)证明:平面MNC⊥平面BCDE;
(2)若EC⊥CD,点P为棱AD的三等分点(近A),平面PMC与平面ABC所成锐二面角的余弦值为 ,求棱AB的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记函数 的定义域为A,g(x)=lg[(x﹣a﹣1)(2a﹣x)](a<1)的定义域为B,求
(1)A,B;
(2)若BA,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com