精英家教网 > 高中数学 > 题目详情

【题目】如图,空间几何体,△、△、△均是边长为2的等边三角形,平面平面,且平面平面中点.

1)证明:平面

2)求二面角的余弦值.

【答案】(1)详见解析(2)

【解析】

1)分别取中点,连接,通过面面平行的判定定理,证得面,从而证得平面.2)方法一(向量法):以点为原点,以轴,以轴,以轴,建立空间直角坐标系,利用平面和平面的法向量,计算二面角的余弦值.方法二(几何法):过点作垂线,垂足为,连接.由此作出二面角的平面角并证明,解直角三角形求得二面角的余弦值.

1)分别取中点,连接

由面且交于平面

由面且交于平面

所以,,所以

,所以

,所以面,所以

2

1:以点为原点,以轴,以轴,以轴,建立如图所示空间直角坐标系

,所以面的法向量可取

,,

,

设面的法向量,所以,取

设二面角的平面角为,据判断其为锐角.

2:过点作垂线,垂足为,连接.

由(1)问可知又因为,所以平面,则有.

所以为二面角的平面角.

由题可知,所以,

所以,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线的极坐标方程为.

(1)求曲线与直线的直角坐标方程.

(2)直线轴的交点为,与曲线的交点为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术;蕴含了极致的数学美和丰富的传统文化信息,现有一幅剪纸的设计图,其中的4个小圆均过正方形的中心,且内切于正方形的两邻边.若在正方形内随机取一点,则该点取自黑色部分的概率为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,,且

(1)证明:平面

(2)在线段上,是否存在一点,使得二面角的大小为?如果存在,求的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为轴上方的点在抛物线上,且,直线与抛物线交于两点(点不重合),设直线的斜率分别为.

(Ⅰ)求抛物线的方程;

(Ⅱ)当时,求证:直线恒过定点并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCDABCD,平面垂直于对角线AC,且平面截得正方体的六个表面得到截面六边形,记此截面六边形的面积为S,周长为l,则(

A. S为定值,l不为定值 B. S不为定值,l为定值

C. Sl均为定值 D. Sl均不为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数

1的极小值点;

2)函数有且只有1个零点;

3恒成立;

4)设函数,若存在区间,使上的值域是,则

上述说法正确的序号为_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设一个袋子里有红、黄、蓝色小球各一个现每次从袋子里取出一个球(取出某色球的概率均相同),确定颜色后放回,直到连续两次均取出红色球时为止,记此时取出球的次数为ξ,则ξ的数学期望为_____ .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最小正周期为,其图象关于直线对称.给出下面四个结论:①将的图象向右平移个单位长度后得到函数图象关于原点对称;②点图象的一个对称中心;③;④在区间上单调递增.其中正确的结论为(

A.①②B.②③C.②④D.①④

查看答案和解析>>

同步练习册答案