精英家教网 > 高中数学 > 题目详情

【题目】如图,等边三角形的中线与中位线相交于已知旋转过程中的一个图形,给出以下四个命题:平面②平面平面③动点在平面上的射影在线段上;④异面直线不可能垂直. 其中正确命题的个数是(

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】∵D,E为边BC,AB的中点,∴ 为平面外的直线,所以平面,故①正确;

AD=AE,所以动点在平面上的射影到点D,E的距离相等,即在∠A的角平分线上,∴A在平面ABC上的射影在线段AF上,故③正确

由③知,平面AGF一定过平面BCED的垂线,∴恒有平面AGF⊥平面BCED,故②正确

(AE)2+EF2=(AF)2,面直线AEBD垂直,故④不正确.

故正确答案①②③.

故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设椭圆C的两个焦点是F1、F2 , 过F1的直线与椭圆C交于P、Q,若|PF2|=|F1F2|,且5|PF1|=6|F1Q|,则椭圆的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且

(1)求证:不论为何值,总有平面BEF⊥平面ABC;

(2)当λ为何值时,平面BEF⊥平面ACD ?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】语句p:曲线x2﹣2mx+y2﹣4y+2m+7=0表示圆;语句q:曲线 + =1表示焦点在x轴上的椭圆,若p∨q为真命题,¬p为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数在定义域内存在区间,使得该函数在区间上的值域为,则称函数是该定义域上的“和谐函数”.

(1)求证:函数是“和谐函数”;

(2)若函数是“和谐函数”,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在实数集R中,已知集合A={x| ≥0}和集合B={x||x﹣1|+|x+1|≥2},则A∩B=( )
A.{﹣2}∪[2,+∞)
B.(﹣∞,﹣2]∪[2,+∞)
C.[2,+∞)
D.{0}∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点.

(Ⅰ)若直线过点且到圆心的距离为1,求直线的方程

(Ⅱ)设过点的直线与圆交于两点的斜率为正),当求以线段为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.

(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?

(2)设一次订购量为个,零件的实际出厂单价为元,写出函数的表达式;

(3)当销售商一次订购500个零件时,该厂获得的利润是多少元? (工厂售出一个零件的利润=实际出厂单价-单件成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常函数)是奇函数.

(1)判断函数上的单调性,并用定义法证明你的结论;

(2)若对于区间上的任意值,使得不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案