精英家教网 > 高中数学 > 题目详情
8.在△ABC中,$\overrightarrow{AB}$=$\overrightarrow{a}$,AC=$\overrightarrow{b}$,$\overrightarrow{BC}$=$\overrightarrow{c}$,若$\overrightarrow{a}$•$\overrightarrow{a}$=$\overrightarrow{a}$•$\overrightarrow{b}$+(-$\overrightarrow{a}$)•$\overrightarrow{c}$+(-$\overrightarrow{a}$)•(-$\overrightarrow{c}$),试判断△ABC的形状.

分析 由题意可得$\overrightarrow{c}$=$\overrightarrow{b}$-$\overrightarrow{a}$,化简条件可得$\overrightarrow{a}$•$\overrightarrow{a}$=$\overrightarrow{a}$•$\overrightarrow{b}$,移项合并由垂直的条件,即可得到结论.

解答 解:在△ABC中,$\overrightarrow{AB}$=$\overrightarrow{a}$,AC=$\overrightarrow{b}$,$\overrightarrow{BC}$=$\overrightarrow{c}$,
即有$\overrightarrow{c}$=$\overrightarrow{b}$-$\overrightarrow{a}$,
若$\overrightarrow{a}$•$\overrightarrow{a}$=$\overrightarrow{a}$•$\overrightarrow{b}$+(-$\overrightarrow{a}$)•$\overrightarrow{c}$+(-$\overrightarrow{a}$)•(-$\overrightarrow{c}$),
则$\overrightarrow{a}$•$\overrightarrow{a}$=$\overrightarrow{a}$•$\overrightarrow{b}$,
即为$\overrightarrow{a}$•($\overrightarrow{b}$-$\overrightarrow{a}$)=0,
即$\overrightarrow{a}$•$\overrightarrow{c}$=0,
即为$\overrightarrow{AB}$⊥$\overrightarrow{BC}$,
则△ABC为直角三角形.

点评 本题考查三角形的形状的判断,考查向量的加减和数量积的运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知f(x)=$\frac{1}{1+x}$(x∈R,且x≠-1),g(x)=x2+2(x∈R).
(1)求f(2),g(2)的值;
(2)求f(f(2)]的值;
(3)求f[g(x)]和g[f(x)]的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某校甲、乙两个研究性学习小组各选1名代表汇报本组的研究成果,已知甲组有A1,A2,A3三名成员,乙组有B1,B2,B3三名成员,求A1被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.分别判断下列直线是否相交,若相交,求出它们的交点.
(Ⅰ)l1:2x-y=7和l2:3x+2y-7=0
(Ⅱ)l1:2x-6y+4=0和l2:4x-12y-8=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn,点(n,Sn)在函数f(x)=2x-1的图象上,n∈N*
(1)求数列{an}的通项公式;
(2)设bn=2n-1,求数列{anbn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,内角A、B、C的对边分别为a、b、c,已知A=$\frac{π}{4}$,b2-a2=$\frac{1}{2}$c2
(1)求tanC的值;
(2)若△ABC的面积为7,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知在△ABC中,AB=1,AC=2,BC=$\sqrt{7}$,D为CB上一点,$\overrightarrow{BD}$=2$\overrightarrow{DC}$,点E为AC的中点,则$\overrightarrow{BE}•\overrightarrow{AD}$=(  )
A.$\frac{4}{3}$B.$\frac{8}{3}$C.$\frac{1}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{2}$,且$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$垂直,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ为(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设y=x2-x+a(a>0),若f(m)<0,则(  )
A.f(m-1)<0B.f(m-1)>0
C.f(m-1)=0D.f(m-1)与0大小关系不确定

查看答案和解析>>

同步练习册答案