【题目】已知函数,,设的定义域为.
(1)求;
(2)用定义证明在上的单调性,并直接写出在上的单调性;
(3)若对一切恒成立,求实数的取值范围.
【答案】(1);
(2)证明见解析;单调递减;
(3).
【解析】
(1)根据指数函数的性质求出函数的定义域;
(2)根据定义证明单调性的步骤证明即可,结合复合函数的单调性得到在上的单调性;
(3)若对一切恒成立,转化为,结合三角函数的最值,可求出a的范围.
解:(1)
要使函数有意义,则,
即,
∴,
故函数的定义域为:
(2)f(x)在上单调递减,
证明如下:设<<3,
则f(x1)﹣f(x2)=,
又<<3,
∴,,,
∴f(x1)﹣f(x2)>0,即f(x1)>f(x2)
∴f(x)在(﹣∞,3)上单调递减,
∴在(﹣∞,3)上单调递减.
(3)∵对一切恒成立,
∴
由 ,可得,又,
∴,即;
由,可得
又,
∴,
解得:,或
又
故a的取值范围为 .
科目:高中数学 来源: 题型:
【题目】某周末,郑州方特梦幻王国汇聚了八方来客. 面对该园区内相邻的两个主题公园“千古蝶恋”和“西游传说”,成年人和未成年人选择游玩的意向会有所不同. 某统计机构对园区内的100位游客(这些游客只在两个主题公园中二选一)进行了问卷调查. 调查结果显示,在被调查的50位成年人中,只有10人选择“西游传说”,而选择“西游传说”的未成年人有20人.
(1)根据题意,请将下面的列联表填写完整;
(2)根据列联表的数据,判断是否有99%的把握认为选择哪个主题公园与年龄有关.
附参考公式与表:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的一个顶点为,且焦距为,直线交椭圆于、两点(点、与点不重合),且满足.
(1)求椭圆的标准方程;
(2)为坐标原点,若点满足,求直线的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着智能手机的普及,各类手机娱乐软件也如雨后春笋般涌现. 如表中统计的是某手机娱乐软件自2018年8月初推出后至2019年4月底的月新注册用户数,记月份代码为(如对应于2018年8月份,对应于2018年9月份,…,对应于2019年4月份),月新注册用户数为(单位:百万人)
(1)请依据上表的统计数据,判断月新注册用户与月份线性相关性的强弱;
(2)求出月新注册用户关于月份的线性回归方程,并预测2019年5月份的新注册用户总数.
参考数据:,,.
回归直线的斜率和截距公式:,.
相关系数(当时,认为两相关变量相关性很强. )
注意:两问的计算结果均保留两位小数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知圆锥底面半径,为底面圆圆心,点Q为半圆弧的中点,点为母线的中点,与所成的角为,求:
(1)圆锥的侧面积;
(2)两点在圆锥面上的最短距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线的方程为,其中.
(1)求证:直线恒过定点;
(2)当变化时,求点到直线的距离的最大值;
(3)若直线分别与轴、轴的负半轴交于两点,求面积的最小值及此时直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com