【题目】如图所示,将一矩形花坛扩建成一个更大的矩形花坛,要求点在上,点在上,且对角线过点,已知米,米.
(1)要使矩形的面积大于平方米,则的长应在什么范围内?
(2)当的长度是多少时,矩形花坛的面积最小?并求出最小值.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx﹣x3与g(x)=x3﹣ax的图象上存在关于x轴的对称点,则实数a的取值范围为( )
A.(﹣∞,e)
B.(﹣∞,e]
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正三棱柱中,底面的边长为2,侧棱长为4,是线段上一点,是线段的中点,为的中点.以为正交基底,建立如图所示的空间直角坐标系.
(1)若,求直线和平面所成角的正弦值;
(2)若二面角的正弦值为,求的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】把函数的图象沿轴向左平移个单位,纵坐标伸长到原来的2倍(横坐标不变)后得到函数的图象,对于函数有以下四个判断:
①该函数的解析式为;;
②该函数图象关于点对称;
③该函数在[,上是增函数;
④函数在上的最小值为,则.
其中,正确判断的序号是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数f(x)=2cos2x的图象向右平移 个单位后得到函数g(x)的图象,若函数g(x)在区间[0, ]和[2a, ]上均单调递增,则实数a的取值范围是( )
A.[ , ]
B.[ , ]
C.[ , ]
D.[ , ]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司制造两种电子设备:影片播放器和音乐播放器.在每天生产结束后,要对产品进行检测,故障的播放器会被移除进行修复. 下表显示各播放器每天制造的平均数量以及平均故障率.
商品类型 | 播放器每天平均产量 | 播放器每天平均故障率 |
影片播放器 | 3000 | 4% |
音乐播放器 | 9000 | 3% |
下面是关于公司每天生产量的叙述:
①每天生产的播放器有三分之一是影片播放器;
②在任何一批数量为100的影片播放器中,恰好有4个会是故障的;
③如果从每天生产的音乐播放器中随机选取一个进行检测,此产品需要进行修复的概率是0.03.
上面叙述正确的是___________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知等腰直角三角形的斜边所在直线方程为,其中点在点上方,直角顶点的坐标为.
(1)求边上的高线所在直线的方程;
(2)求等腰直角三角形的外接圆的标准方程;
(3)分别求两直角边,所在直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=e2x(ax2+2x﹣1),a∈R.
(Ⅰ)当a=4时,求证:过点P(1,0)有三条直线与曲线y=f(x)相切;
(Ⅱ)当x≤0时,f(x)+1≥0,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com