分析 原式利用诱导公式变形,再利用完全平方公式及二次根式的性质化简,计算即可得到结果.
解答 解:$\frac{\sqrt{1-2sin70°cos430°}}{sin250°+cos650°}$=$\frac{\sqrt{1-2sin70°cos(360°+70°)}}{sin(180°+70°)+cos(720°-70°)}$
=$\frac{\sqrt{1-2sin70°cos70°}}{-sin70°+cos70°}=\frac{\sqrt{(sin70°-cos70°)^{2}}}{cos70°-sin70°}$=$\frac{sin70°-cos70°}{cos70°-sin70°}=-1$.
点评 本题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键,是基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $f(x)={log_2}(\sqrt{{x^2}+1}-x)$ | B. | $f(x)=\frac{1}{x}$ | C. | f(x)=x2-x3 | D. | f(x)=sinx |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 3 | B. | 5 | C. | 2 | D. | 8 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com