精英家教网 > 高中数学 > 题目详情
四棱锥P-ABCD中,平面PAD⊥平面ABCD,△PAD是正三角形,底面四边形ABCD是菱形,∠DAB=60°,E为PC中点,F是线段DE上任意一点.
(1)求证:AD⊥PB;
(2)若点M为AB的中点,N为DC的中点,求证:平面EMN平面PAD;
(3)设P,A,F三点确定的平面为a,平面a与平面DEB的交线为l,试判断直线PA与l的位置关系,并证明之.
证明:(1)令G为AD边的中点,连接PG,BG
在底面菱形ABCD中,∠DAB=60°,
∴△ABD为正三角形
∴BG⊥AD,
又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,
又∵△PAD为正三角形,G为AD边的中点,
∴PG⊥AD,
∵PG?平面PGB,BG?平面PGB,PG∩BG=G,
∴AD⊥平面PGB,
∵PB?平面PGB.
∴AD⊥PB.
(2)连接EM,EN
在△PCD中,
∵E,N分别为PC,CD的中点
∴ENPD
又∵EN?平面PAD,PD?平面PAD
∴EN平面PAD
在菱形ABCD中,点M为AB的中点,N为DC的中点,
∴MNAD
又∵MN?平面PAD,AD?平面PAD
∴MN平面PAD
又∵EN,MN?平面EMN且EN∩MN=N
∴平面EMN平面PAD
(3)直线PA与l平行,理由如下:
连接AC交BD于O,连接EO
根据菱形的对角线互相平分可得O为AC的中点,
又∵E为PC中点
∴EOPA
∵PA?平面DEB,EO?平面DEB
∴PA平面DEB
又∵PA?α,α∩平面DEB=l
∴PAl
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

长方体ABCD-A1B1C1D1中,AA1=
2
,AB=BC=2,O是底面对角线的交点.
(Ⅰ)求证:B1D1平面BC1D;
(Ⅱ)求证:A1O⊥平面BC1D;
(Ⅲ)求三棱锥A1-DBC1的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

三棱锥P-ABC,底面ABC为边长为2
3
的正三角形,平面PBC⊥平面ABC,PB=PC=2,D为AP上一点,AD=2DP,O为底面三角形中心.
(Ⅰ)求证DO面PBC;
(Ⅱ)求证:BD⊥AC;
(Ⅲ)求面DOB截三棱锥P-ABC所得的较大几何体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正六棱柱ABCDEF-A1B1C1D1E1F1的所有棱长均为2,G为AF的中点.
(1)求证:F1G平面BB1E1E;
(2)求证:平面F1AE⊥平面DEE1D1
(3)求四面体EGFF1的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,FD垂直于矩形ABCD所在平面,CEDF,∠DEF=90°.
(Ⅰ)求证:BE平面ADF;
(Ⅱ)若矩形ABCD的一个边AB=
3
,EF=2
3
,则另一边BC的长为何值时,三棱锥F-BDE的体积为
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正方体ABCD-A1B1C1D1中,AB=1
(1)求异面直线A1B与B1C所成的角;
(2)求证:平面A1BD平面B1CD1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥P-ABC中,PC⊥底面ABC,AB⊥BC,D,E分别是AB、PB的中点.
(1)求证:DE平面PAC;
(2)求证:AB⊥PB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,四棱锥P-ABCD的底面ABCD为直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中点.
(1)求证:BE平面PAD;
(2)若AP=2AB,求证:BE⊥CD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD为平行四边形.∠DAB=60°,AB=2AD,PD⊥底面
ABCD.
(Ⅰ)证明:PA⊥BD
(Ⅱ)设PD=AD=1,求棱锥D-PBC的高.

查看答案和解析>>

同步练习册答案