精英家教网 > 高中数学 > 题目详情

【题目】今天你低碳了吗?近来国内网站流行一种名为“碳排放计算器”的软件,人们可以由此计算出自己每天的碳排放量,如家居用电的碳排放量(千克)耗电度数,汽车的碳排放量(千克)油耗公升数等,某班同学利用寒假在两个小区逐户进行了一次生活习惯是否符合低碳观念的调查.若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,这二族人数占各自小区总人数的比例数据如下:

小区

低碳族

非低碳族

小区

低碳族

非低碳族

比例

1/2

1/2

比例

4/5

1/5

1)如果甲、乙来自小区,丙、丁来自小区,求这4人中恰好有两人是低碳族的概率;

2小区经过大力宣传,每周非低碳中有20%的人加入到低碳族的行列,如果两周后随机地从小区中任选5个人,记表示5个人中的低碳族人数,求

【答案】12

【解析】

1)这4人中恰好有两人是低碳族分三类:甲、乙低碳族,丙、丁非低碳族;甲、乙非低碳族,丙、丁低碳族;甲、乙中一人低碳族,一人非低碳族,丙、丁一人低碳族,一人非低碳族,每类中按独立事件求概率,再求和即可;
2)首先求出两周后小区中非低碳族的概率,服从二项分布,利用二项分布的期望和方差公式求解即可.

解:(1)记这4人中恰好有2人是低碳族为事件

2)设小区有人,2周后非低碳族的概率

2周后低碳族的概率

依题意

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙两人2013-2017这五年的年度体检的血压值的折线图如图所示.

(1)根据散点图,直接判断甲、乙这五年年度体检的血压值谁的波动更大,并求波动更大者的方差;

(2)根据乙这五年年度体检血压值的数据,求年度体检血压值关于年份的线性回归方程,并据此估计乙在2018年年度体检的血压值.

(附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织七匹三丈(1=尺,一丈=尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织尺,一月织了七匹三丈,问每天增加多少尺布?”若这一个月有天,记该女子一个月中的第天所织布的尺数为,则的值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,点,直线.

1)求与直线l垂直,且与圆C相切的直线方程;

2)在x轴上是否存在定点B(不同于点A),使得对于圆C上任一点P为常数?若存在,试求这个常数值及所有满足条件的点B的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体ABCDEF中,四边形ABCD为矩形,二面角A-CD-F60°,DE∥CF,CD⊥DE,AD=2,DE=DC=3,CF=6.

(1)求证:BF∥平面ADE;

(2)在线段CF上求一点G,使锐二面角B-EG-D的余弦值为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体中,平面底面ABC,四边形是正方形,,Q是的中点,且

求证:平面

求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1axby)n的展开式中不含y的项的系数的绝对值的和为32,则an的值可能为( )

A.a=2n=5B.a=1n=6C.a=-1n=5D.a=1n=5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民收入也逐年增加.为了更好的制定2019年关于加快提升农民年收入力争早日脱贫的工作计划,该地扶贫办统计了201850位农民的年收入并制成如下频率分布直方图:

附:参考数据与公式 ,若 ,则① ;② ;③ .

1)根据频率分布直方图估计50位农民的年平均收入(单位:千元)(同一组数据用该组数据区间的中点值表示);

2)由频率分布直方图可以认为该贫困地区农民年收入 X 服从正态分布 ,其中近似为年平均收入 近似为样本方差 ,经计算得:,利用该正态分布,求:

i)在2019年脱贫攻坚工作中,若使该地区约有占总农民人数的84.14%的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?

ii)为了调研精准扶贫,不落一人的政策要求落实情况,扶贫办随机走访了1000位农民.若每个农民的年收入相互独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.

1)求第一次检测出的是次品且第二次检测出的是正品的概率;

2)已知每检测一件产品需要费用50元,设表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求的分布列和数学期望.

查看答案和解析>>

同步练习册答案