精英家教网 > 高中数学 > 题目详情
已知P是椭圆
x2
100
+
y2
84
=1
上的点,Q、R分别是圆(x+4)2+y2=1和圆(x-4)2+y2=1 上的点,则|PQ|+|PR|的最小值是(  )
分析:设椭圆左右焦点为F1、F2,可得F1、F2恰好是两圆的圆心,有|PF1|+|PF2|=20,根据三角形两边之差小于第三边知:|PQ|最小为|PF1|-1,|PR|最小为|PF2|-1,由此即可求得|PQ|+|PR|的最小值.
解答:解:设椭圆左右焦点为F1、F2,可得F1(-4,0),F2(4,0)
∴椭圆左右焦点恰好分别为两圆的圆心,且|PF1|+|PF2|=2a=20
由三角形两边之差小于第三边,
可知|PQ|的最小值为|PF1|-1,|PR|的最小值为|PF2|-1
∴|PQ|+|PR|≥|PF1|-1+|PF2|-1=20-2=18
故选:C
点评:本题给出椭圆上的点P、圆(x+4)2+y2=1上的点Q和圆(x-4)2+y2=1上的点R,求|PQ|+|PR|的最小值.着重考查了椭圆的定义与标准方程、圆的方程等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列五个命题,其中真命题的序号是
 
(写出所有真命题的序号).
(1)已知C:
x2
2-m
+
y2
m2-4
=1
(m∈R),当m<-2时C表示椭圆.
(2)在椭圆
x2
45
+
y2
20
=1上有一点P,F1、F2是椭圆的左,右焦点,△F1PF2为直角三角形则这样的点P有8个.
(3)曲线
x2
10-m
+
y2
6-m
=1(m<6)
与曲线
x2
5-m
+
y2
9-m
=1(5<m<9)
的焦距相同.
(4)渐近线方程为y=±
b
a
x(a>0,b>0)
的双曲线的标准方程一定是
x2
a2
-
y2
b2
=1

(5)抛物线y=ax2的焦点坐标为(0,
1
4a
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知FΘ,FΡ是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点,A,B分别是此椭圆的右顶点和上顶点,P是椭圆上一点,OP∥AB,PFΘ⊥x轴,|FΘA|=
10
+
5
,则此椭圆的方程是
x2
10
+
y2
5
=1
x2
10
+
y2
5
=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列五个命题,其中真命题的序号是______(写出所有真命题的序号).
(1)已知C:
x2
2-m
+
y2
m2-4
=1
(m∈R),当m<-2时C表示椭圆.
(2)在椭圆
x2
45
+
y2
20
=1上有一点P,F1、F2是椭圆的左,右焦点,△F1PF2为直角三角形则这样的点P有8个.
(3)曲线
x2
10-m
+
y2
6-m
=1(m<6)
与曲线
x2
5-m
+
y2
9-m
=1(5<m<9)
的焦距相同.
(4)渐近线方程为y=±
b
a
x(a>0,b>0)
的双曲线的标准方程一定是
x2
a2
-
y2
b2
=1

(5)抛物线y=ax2的焦点坐标为(0,
1
4a
)

查看答案和解析>>

同步练习册答案