精英家教网 > 高中数学 > 题目详情

【题目】如图,已知三棱锥O—ABC的侧棱OA,OB,OC两两垂直,且OA=1,OB=OC=2,E是OC的中点.

(1)求异面直线BE与AC所成角的余弦值;

(2)求二面角A—BE—C的余弦值.

【答案】(1);(2)

【解析】

(1)先以O为原点,OB,OC,OA分别为x,y,z轴建立空间直角坐标系.设出点的坐标,求出直线直线BE与AC的方向向量,最后利用向量的夹角公式计算即得异面直线BE与AC所成的角的余弦值;

(2)先分别求得平面ABE的法向量和平面BEC的一个法向量,再利用夹角公式求二面角的余弦值即可.

(1)以为原点,分别为轴建立空间直角坐标系,

则有.

.

.

由于异面直线所成的角是锐角,故其余弦值是.

(2).

设平面的法向量为

则由,得

.

同理可得平面的一个法向量为

.

由于二面角的平面角是的夹角的补角,其余弦值是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】△ABC中,角ABC对应的边分别是abc,已知cos2A﹣3cosB+C=1

1)求角A的大小;

2)若△ABC的面积S=5b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从数列中取出部分项组成的数列称为数列子数列”.

1)若等差数列的公差,其子数列恰为等比数列,其中,求

2)若,判断数列是否为子数列,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图四边形ABCD为菱形,GACBD交点,

(I)证明:平面平面

(II)若 三棱锥的体积为,求该三棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(管道构成Rt△FHE,H是直角项点)来处理污水.管道越长,污水净化效果越好.设计要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上.已知AB=20米,AD=米,记∠BHE=

(1)试将污水净化管道的长度L表示为的函数,并写出定义域;

(2)当取何值时,污水净化效果最好?并求出此时管道的长度L.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的左、右焦点分别为为椭圆上一动点(异于左、右顶点),若的周长为,且面积的最大值为.

(1)求椭圆的方程;

(2)设是椭圆上两动点,线段的中点为的斜率分别为 为坐标原点,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的左、右焦点分别为,点在椭圆上.

1)求椭圆的方程;

2)若AB是椭圆上位于x轴上方的两点,直线与直线交于点P,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].

(1)求图中的值;

(2)根据频率分布直方图,估计这100名学生语文成绩的平均分,众数,中位数;

(3)若这100名学生语文成绩某些分数段的人数()与数学成绩相应分数段的人数()之比如下表所示,求数学成绩在[50,90)之外的人数.

分数段

[50,60)

[60,70)

[70,80)

[80,90)

1:1

2:1

3:4

4:5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}各项均不相同,a1=1,定义,其中nk∈N*.

(1)若,求

(2)若bn+1(k)=2bn(k)对均成立,数列{an}的前n项和为Sn

(i)求数列{an}的通项公式;

(ii)若kt∈N*,且S1SkS1StSk成等比数列,求kt的值.

查看答案和解析>>

同步练习册答案