精英家教网 > 高中数学 > 题目详情
8.作出下列函数的图象:
(1)y=2-x,x∈[0,2];
(2)y=-x2+3x+4;
(3)y=$\frac{1}{2x}$.

分析 作函数图象主要有两种思路:①利用列表描点法,②转化为基础函数,利用基本函数图象作复杂函数图象.

解答 解:(1)y=2-x,x∈[0,2];

(2)y=-x2+3x+4=-(x-$\frac{3}{2}$)2+$\frac{25}{4}$;

(3)y=$\frac{1}{2x}$.

点评 本题考查函数图象的作法,考查学生的作图能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.(1)求值:lg5•lg400+(lg2${\;}^{\sqrt{2}}$)2
(2)已知x=log23,求$\frac{{8}^{x}+{8}^{-x}}{{2}^{x}+{2}^{-x}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)已知$\frac{3sinα-cosα}{2sinα+3cosα}$=$\frac{8}{9}$,求tanα的值;
(2)已知0<α<$\frac{π}{2}$,sinα=$\frac{4}{5}$,求$\frac{si{n}^{2}α+2sinαcosα}{co{s}^{2}α+1-2si{n}^{2}α}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.函数f(x)在(-1,1)上是奇函数,且在[0,1)上单调递增,判断f(-$\frac{1}{π}$),f($\frac{1}{2}$),f($-\frac{1}{4}$)的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求函数y=$\sqrt{tanx-1}$+lg(cosx-$\frac{1}{2}$)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知a∈{x|($\frac{1}{2}$)x-x=0},则f(x)=loga(4+3x-x2)的单调减区间为(-1,$\frac{3}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知双曲线的中心在原点,两对称轴都在坐标轴上,且过P1(-2,$\frac{3\sqrt{5}}{2}$)和P2($\frac{4\sqrt{7}}{3}$,4)两点,求双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若直线(m-1)x+my+1=0的斜率等于2,则实数m的值为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2x-$\frac{1}{{{2^{|x|}}}}$.
(1)求函数y=f(x)的零点的集合;
(2)若对于t∈[1,2]时,不等式2tf(2t)+mf(t)≥0恒成立,求实数m的取值范围;
(3)若0≤x≤2,求函数h(x)=2x[f(x)+a]的最小值g(a).

查看答案和解析>>

同步练习册答案