精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若,判断的奇偶性,并说明理由;

2)若,求上的最小值;

3)若,且有三个不同实根,求的取值范围.

【答案】1)是奇函数;(2;(3.

【解析】

1)由a0,可得fx)为奇函数,运用定义即可得到结论;

2)求得fx)的解析式,讨论a1时,当1a3时,当3a4时,当a4时,结合单调性,可得最小值;

3)由题意可得fx)不单调,求得fx)的分段函数,讨论当xa递增,且a0xa不单调,以及当xa递增,且a0xa不单调,可得的范围,即可得到所求取值范围.

解:(1a0,可得fx)=x|x|+bx为奇函数,

由定义域为Rf(﹣x)=﹣x|x|bx=﹣(x|x|+bx)=﹣fx),

fx)为奇函数;

2b0,可得fx)=x|xa|

由于1x3

a1时,可得fx)=x2ax[13]递增,

可得fx)的最小值为f1)=1a

a3时,fx)=axx2[1]递增,(3]递减,

f1)﹣f3)═a1﹣(3a9)=82a

可得a4时,f1)<f3),即为f1)取得最小值a1

3a4时,f1)≥f3),可得f3)取得最小值3a9

1a3时,由fx)≥0,可得xa时,取得最小值0

综上可得,a1时,fx)的最小值为1a

1a3时,fx)的最小值为0

3a4时,fx)的最小值为3a9

a4时,fx)的最小值为a1

3b0,且fx有三个不同实根,

fx)不单调,

fx

xa递增,且a0xa不单调,

可得a,成立,又a,即ab

ab

3aba2+b26ab

的取值范围是();

xa递增,且a0xa不单调,

可得aa<﹣b,又a,即ab

即有ab,不成立.

综上可得的取值范围是().

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2019年某开发区一家汽车生产企业计划引进一批新能源汽车制造设备,通过市场分析,全年需投入固定成本3000万元,每生产x(百辆),需另投入成本万元,且,由市场调研知,每辆车售价6万元,且全年内生产的车辆当年能全部销售完.

1)求出2019年的利润(万元)关于年产量x(百辆)的函数关系式;(利润=销售额成本)

22019年产量为多少(百辆)时,企业所获利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(Ⅰ)求证:当时,

(Ⅱ)存在,使得成立,求a的取值范围;

(Ⅲ)若恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,圆,定点,点是圆上一动点,线段的垂直平分线交圆的半径于点,点的轨迹为.

(1)求曲线的方程;

(2)已知点是曲线上但不在坐标轴上的任意一点,曲线轴的焦点分别为,直线分别与轴相交于两点,请问线段长之积是否为定值?如果还请求出定值,如果不是请说明理由;

(3)在(2)的条件下,若点坐标为(-1,0),设过点的直线相交于两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车的燃油效率是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )

A. 消耗1升汽油,乙车最多可行驶5千米

B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多

C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油

D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知甲盒内有大小相同的2个红球和3个黑球,乙盒内有大小相同的3个红球和3个黑球,现从甲,乙两个盒内各取2个球.

(1)求取出的4个球中恰有1个红球的概率;

(2)ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经过多年的运作,双十一抢购活动已经演变成为整个电商行业的大型集体促销盛宴.为迎接2018双十一网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在双十一的销售量p万件与促销费用x万元满足(其中a为正常数).已知生产该产品还需投入成本万元(不含促销费用),每一件产品的销售价格定为元,假定厂家的生产能力完全能满足市场的销售需求.

1)将该产品的利润y万元表示为促销费用x万元的函数;

2)促销费用投入多少万元时,厂家的利润最大?并求出最大利润的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车智能辅助驾驶已得到广泛应用,其自动刹车的工作原理是用雷达测出车辆与前方障碍物之间的距离(并结合车速转化为所需时间),当此距离等于报警距离时就开始报警提醒,等于危险距离时就自动刹车,某种算法(如下图所示)将报警时间划分为4段,分别为准备时间、人的反应时间、系统反应时间、制动时间,相应的距离分别为,当车速为(米/秒),且时,通过大数据统计分析得到下表(其中系数随地面湿滑成都等路面情况而变化,.

阶段

0、准备

1、人的反应

2、系统反应

3、制动

时间

距离

1)请写出报警距离(米)与车速(米/秒)之间的函数关系式,并求时,若汽车达到报警距离时人和系统均不采取任何制动措施,仍以此速度行驶,则汽车撞上固定障碍物的最短时间(精确到0.1秒);

2)若要求汽车不论在何种路面情况下行驶,报警距离均小于80米,则汽车的行驶速度应限制在多少米/秒以下?合多少千米/小时?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图象向右平移个单位长度得到的图象,若的对称中心为坐标原点,则关于函数有下述四个结论:

的最小正周期为 ②若的最大值为2,则

有两个零点 在区间上单调

其中所有正确结论的标号是(

A.①③④B.①②④C.②④D.①③

查看答案和解析>>

同步练习册答案