精英家教网 > 高中数学 > 题目详情
设函数f(x)=a·b,其中向量a=(2cosx,1),b=(cosx,sin2x),x∈R.

(1)若f(x)=1-且x∈[-,),求x;

(2)若函数y=2sin2x的图象按向量c=(m,n)(|m|<)平移后得到函数y=f(x)的图象,求实数m、n的值.

解:(1)依题意f(x)=2cos2x+sin2x=1+2sin(2x+).?

由1+2sin(2x+)=1-,得sin(2x+)=-.?

∵-≤x<,∴-≤2x+π.?∴2x+=-,∴x=-.

(2)∵a=(2cosx,1),b=(cosx, sin2x),

∴f(x)=a·b=(2cosx,1)·(cosx, sin2x)=2cos2x+sin2x=1+2sin(2x+).?

设P(x,y)为y=2sin2x图象上任一点,它在y=f(x)的图象上对应的点为P′(x′,y′).?

?∴代入y=2sin2x,得y′-n=2sin2(x′-m)=2sin(2x′-2m),?

即y′=2sin (2x′-2m)+n,而f(x)=2sin(2x+)+1.?

∴sin(2x-2m)=sin(2x+),n=1.?

∴sin(2x-2m)-sin(2x+)=0,n=1.?

∴ 2cos(2x-m+)sin(-m-)=0对所有x都成立?

∴sin(-m-)=0即m+=kπ(k∈Z)?

∴m=kπ- (k∈Z),又m<()?

∴m=-,n=1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a?b,其中向量
a
=(m,cos2x),
b
=(1+sin2x,1),x∈R,且y=f(x)的图象经过点(
π
4
,2)

(1)求实数m的值;
(2)求f(x)的最小正周期.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=a-
22x+1

(1)求证:不论a为何实数f(x)总为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)若不等式f(x)+a>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
(a-2)x,(x≥2)
(
1
2
)
x
 
-1,(x<2)
an=f(n)
,若数列{an}是单调递减数列,则实数a的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(
2
,-2)
b
=(sin(
π
4
+2x),cos2x)
(x∈R).设函数f(x)=
a
b

(1)求f(-
π
4
)
的值;     
(2)求函数f(x)在区间[0,
π
2
]
上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(5
3
cosx,cosx)
b
=(sinx,2cosx)
,其中x∈[
π
6
π
2
]
,设函数f(x)=
a
b
+|
b
|2+
3
2

(1)求函数f(x)的值域;        
(2)若f(x)=5,求x的值.

查看答案和解析>>

同步练习册答案