【题目】如下图所示,在三棱锥P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D,E分别在棱PB,PC上,且DE∥BC.
(1)求证:BC⊥平面PAC;
(2)当D为PB的中点时,求AD与平面PAC所成的角的正弦值;
(3)是否存在点E,使得二面角A-DE-P为直二面角?并说明理由.
【答案】(1)见证明;(2) (3)见解析
【解析】
建立如图所示的空间直角坐标系,(1)通过证明,再结合即可得结论;(2)结合(1)中的结论进一步说明是与平面所成的角,先通过向量夹角公式求出余弦值,再求正弦值;(3)由已知条件推导出为二面角的平面角,由此能推导出存在点使得二面角是直二面角.
以A为原点,,分别为y轴、z轴的正方向,
过A点且垂直于平面PAB的直线为x轴,建立空间直角坐标系,
设PA=a,由已知可得:A(0,0,0),B(0,a,0),C,P(0,0,a).
(1)=(0,0,a),=,∴=0,∴⊥,∴BC⊥AP,
又∵∠BCA=90°,∴BC⊥AC,∴BC⊥平面PAC.
(2)∵D为PB的中点,DE∥BC,∴E为PC的中点,
∴D,E,
∴由(1)知,BC⊥平面PAC,∴DE⊥平面PAC,垂足为点E,
∴∠DAE是AD与平面PAC所成的角,
∵=,=,∴cos∠DAE==,
∴AD与平面PAC所成的角的正弦值为.
(3)∵DE∥BC,又由(1)知BC⊥平面PAC,∴DE⊥平面PAC,
又∵AE平面PAC,PE平面PAC,
∴DE⊥AE,DE⊥PE,∴∠AEP为二面角A-DE-P的平面角.
∵PA⊥底面ABC,∴PA⊥AC,∴∠PAC=90°,
∴在棱PC上存在一点E,使得AE⊥PC,这时∠AEP=90°,
故存在点E,使得二面角A-DE-P是直二面角.
科目:高中数学 来源: 题型:
【题目】已知椭圆 ,直线 (为参数).
(1)写出椭圆的参数方程及直线的普通方程;
(2)设,若椭圆上的点满足到点的距离与其到直线的距离相等,求点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了研究某种微生物的生长规律,研究小组在实验室对该种微生物进行培育实验.前三天观测的该微生物的群落单位数量分别为12,16,24.根据实验数据,用y表示第天的群落单位数量,某研究员提出了两种函数模型;①;②,其中a,b,c,p,q,r都是常数.
(1)根据实验数据,分别求出这两种函数模型的解析式;
(2)若第4天和第5天观测的群落单位数量分别为40和72,请从这两个函数模型中选出更合适的一个,并计算从第几天开始该微生物群落的单位数量超过1000.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知直线的参数方程是(是参数),圆的极坐标方程为.
(Ⅰ)求圆心的直角坐标;
(Ⅱ)由直线上的点向圆引切线,求切线长的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的顶点为平面直角坐标系的坐标原点,焦点为圆的圆心.经过点的直线交抛物线于两点,交圆于两点,在第一象限,在第四象限.
(1)求抛物线的方程;
(2)是否存在直线使是与的等差中项?若存在,求直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在矩形中,AB=2AD,为DC的中点,将△ADM沿AM折起使平面ADM⊥平面ABCM.
(1)当AB=2时,求三棱锥的体积;
(2)求证:BM⊥AD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,,分别为椭圆的左、右焦点,且.
(1)求椭圆的方程;
(2)设为椭圆上任意一点,以为圆心,为半径作圆,当圆与直线:有公共点时,求面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com