(本小题12分)如图,已知平面,,为等边三角形,,为的中点.
(1)求证:平面;
(2)求证:平面平面;
(3)求直线和平面所成角的正弦值.
(1)证明:见解析;(2)见解析.(3)直线和平面所成角的正弦值为 .
【解析】(1)解本题的关键是在平面BEC内构造出一条与AF平行的平行线。取的中点,连、,然后证明四边形BGFA为平行四边形即可。
(2) 关键是证:平面,即证:平面,即CD的中点F,即证:和即可。
(3)解本小题的关键是找出线面角。在平面内,过作于,连
∵平面平面,∴平面,
∴为和平面所成的角。然后解三角形即可。
(1)证明:取的中点,连、.
∵为的中点,∴且
∵平面,平面.
∴,∴
又,∴
∴四边形为平行四边形,因此
∵平面,平面.
∴平面 …………………………………4分
(2)证明:∵是等边三角形,为的中点,
∴ ∵平面,平面,∴
又,故平面
∵,∴平面
∵平面,
∴平面平面 ………………………………………………………8分
(3)解:在平面内,过作于,连
∵平面平面,∴平面
∴为和平面所成的角 ………………………………10分
设,则
,
中,
∴直线和平面所成角的正弦值为………………………………………12分
(用空间向量法解答对应给分)
科目:高中数学 来源:2010-2011学年湖南省常德市高三质量检测考试数学理卷 题型:解答题
(本小题12分)
如图3,已知在侧棱垂直于底面
的三棱柱中,AC=BC, AC⊥BC,点D是A1B1中点.
(1)求证:平面AC1D⊥平面A1ABB1;
(2)若AC1与平面A1ABB1所成角的正弦值
为,求二面角D- AC1-A1的余弦值.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年河北省高三高考压轴模拟考试文数 题型:解答题
(本小题12分)如图,四棱锥中,
侧面是边长为2的正三角形,且与底面垂直,底面是的菱形,为的中点.
(1)求与底面所成角的大小;
(2)求证:平面;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源:2014届海南省高一上学期教学质量监测三数学 题型:解答题
(本小题12分)如图,四棱锥中,底面是正方形,, 底面, 分别在上,且
(1)求证:平面∥平面.
(2)求直线与平面面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源:2010-2011年海南省高二下学期质量检测数学文卷(一) 题型:解答题
(本小题12分)
如图:⊙O为△ABC的外接圆,AB=AC,过点A的直线交⊙O于D,交BC延长线于F,DE是BD的延长线,连接CD。
① 求证:∠EDF=∠CDF;
②求证:AB2=AF·AD。
查看答案和解析>>
科目:高中数学 来源:2009-2010集宁一中学高三年级理科数学第一学期期末考试试题 题型:解答题
(本小题12分)如图,四面体ABCD中,O、E分别是BD、BC的中点,
(I)求证:平面BCD;
(II)求异面直线AB与CD所成角的大小;
(III)求点E到平面ACD的距离。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com