【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠BCD=60°,AB=2AD,PD⊥平面ABCD,点M为PC的中点.
(1)求证:PA∥平面BMD;
(2)求证:AD⊥PB;
(3)若AB=PD=2,求点A到平面BMD的距离.
【答案】
(1)证明:设AC和BD交于点O,则由底面ABCD是平行四边形可得O为AC的中点.
由于点M为PC的中点,故MO为三角形PAC的中位线,故MO∥PA.再由PA不在平面BMD内,而MO在平面BMD内,
故有PA∥平面BMD
(2)证明:由PD⊥平面ABCD,可得PD⊥AD,平行四边形ABCD中,∵∠BCD=60°,AB=2AD,
∴cos∠BAD= =cos60°= ,∴AD⊥BD.
这样,AD垂直于平面PBD内的两条相交直线,故AD⊥平面PBD,∴AD⊥PB
(3)解:若AB=PD=2,则AD=1,BD=ABsin∠BAD=2× = ,
由于平面BMD经过AC的中点,故点A到平面BMD的距离等于点C到平面BMD的距离.
取CD得中点N,则MN⊥平面ABCD,且MN= PD=1.
设点C到平面MBD的距离为h,则h为所求.
由AD⊥PB 可得BC⊥PB,故三角形PBC为直角三角形.
由于点M为PC的中点,利用直角三角形斜边的中线等于斜边的一半,可得MD=MB,故三角形MBD为等腰三角形,
故MO⊥BD.
由于PA= = = ,∴MO= .
由VM﹣BCD=VC﹣MBD 可得, ( )MN= ( ×BD×MO )×h,
故有 ×( )×1= ( )h,
解得h= .
【解析】(1)设AC和BD交于点O,MO为三角形PAC的中位线可得MO∥PA,再利用直线和平面平行的判定定理,证得结论.(2)由PD⊥平面ABCD,可得PD⊥AD,再由cos∠BAD= = ,证得 AD⊥BD,可证AD⊥平面PBD,从而证得结论.(3)点A到平面BMD的距离等于点C到平面BMD的距离h,求出MN、MO的值,利用等体积法求得点C到平面MBD的距离h.
【考点精析】本题主要考查了直线与平面平行的判定和直线与平面垂直的判定的相关知识点,需要掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行;一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知椭圆 的离心率为 ,以原点为圆心,椭圆的短半轴为半径的圆与直线 相切.
(1)求椭圆的方程;
(2)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交椭圆C于另一点E,证明直线AE与x轴相交于点Q(1,0).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为[5,15],(15,25],(25,35],(35,45],由此得到样本的重量频率分布直方图(如图),
(1)求a的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;
(2)从盒子中随机抽取3个小球,其中重量在[5,15]内的小球个数为X,求X的分布列和数学期望.(以直方图中的频率作为概率)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A、B、C所对的边分别为a,b,c,cos2C+2 cosC+2=0.
(1)求角C的大小;
(2)若b= a,△ABC的面积为 sinAsinB,求sinA及c的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1(a>b>0)的焦距为2,且过点P(1, )
(1)椭圆C的方程;
(2)设椭圆C的左右焦点分别为F1 , F2 , 过点F2的直线l与椭圆C交于M,N两点.
①当直线l的倾斜角为45°时,求|MN|的长;
②求△MF1N的内切圆的面积的最大值,并求出当△MF1N的内切圆的面积取最大值时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在空间直角坐标系中有直三棱柱ABC﹣A1B1C1 , CA=2CB,CC1=3CB,则直线BC1与直线AB1夹角的余弦值为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数y=f(x)的定义域是[0,2],则函数g(x)= 的定义域是( )
A.[0,1]
B.[0,1)
C.[0,1)∪(1,4]
D.(0,1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知非空集合A,B满足以下两个条件.
(ⅰ)A∪B={1,2,3,4,5,6},A∩B=;
(ⅱ)A的元素个数不是A中的元素,B的元素个数不是B中的元素,则有序集合对(A,B)的个数为( )
A.10
B.12
C.14
D.16
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,CD=1,∠BCD=60°,BD⊥CD,正方形ADEF,且面ADEF⊥面ABCD.
(Ⅰ)求证:BD⊥平面ECD.
(Ⅱ)求D点到面CEB的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com