精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥PABCD的底面ABCD是正方形,PA⊥底面ABCDEF分别是ACPB的中点.

1)证明:EF∥平面PCD

2)求证:面PBD⊥面PAC

3)若PA=AB,求PD与平面PAC所成角的大小.

【答案】1)证明见详解(2)证明见详解(3

【解析】

1)作中点中点,连接,通过求证四边形为平行四边形进而求证;

2)可结合正方形性质和线面垂直性质设法证明,进而求证;

3)连接,可证即为PD与平面PAC所成角的大小,通过几何关系即可求解;

1)如图,作中点中点,连接

分别为中点,,同理,又底面为正方形,

为平行四边形,,又平面

平面平面

(2)连接底面为正方形,,又 PA⊥底面ABCD平面平面,又因平面平面PBD⊥平面PAC

(3)连接,由(2)可知,平面,也即平面,则即为PD与平面PAC所成角的大小,设底面正方形边长为

,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C1ab0)的左、右焦点分别为F1F2,点P为椭圆C上不与左右顶点重合的动点,设IG分别为△PF1F2的内心和重心.当直线IG的倾斜角不随着点P的运动而变化时,椭圆C的离心率为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求的单调区间;

2)过点存在几条直线与曲线相切,并说明理由;

3)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:三棱柱的所有棱长均相等,的中点.

(1)求证:平面⊥平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】今年1月至2月由新型冠状病毒引起的肺炎病例陡然增多,为了严控疫情传播,做好重点人群的预防工作,某地区共统计返乡人员人,其中岁及以上的共有.人中确诊的有名,其中岁以下的人占.

1)请将下面的列联表补充完整,并判断是否有%的把握认为是否确诊患新冠肺炎与年龄有关;

确诊患新冠肺炎

未确诊患新冠肺炎

合计

50岁及以上

40

50岁以下

合计

10

100

2)为了研究新型冠状病毒的传染源和传播方式,从名确诊人员中随机抽出人继续进行血清的研究,表示被抽取的人中岁以下的人数,求的分布列以及数学期望.

参考表:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

参考公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆规是画椭圆的一种工具,如图1所示,在十字形滑槽上各有一个活动滑标,有一根旋杆将两个滑标连成一体,为旋杆上的一点,且在两点之间,且,当滑标在滑槽内作往复运动,滑标在滑槽内随之运动时,将笔尖放置于处可画出椭圆,记该椭圆为.如图2所示,设交于点,以所在的直线为轴,以所在的直线为轴,建立平面直角坐标系.

1)求椭圆的方程;

2)设是椭圆的左右顶点,点为直线上的动点,直线分别交椭圆于两点,求四边形面积为,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥ABCD中,点EBD上,EAEBECEDBDCD,△ACD为正三角形,点MN分别在AECD上运动(不含端点),且AMCN,则当四面体CEMN的体积取得最大值时,三棱锥ABCD的外接球的表面积为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,侧棱垂直于底面, 分别是的中点.

1)求证: 平面平面

2)求证: 平面

3)求三棱锥体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄元一年定期,若年利率为保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为  

A.B.

C.D.

查看答案和解析>>

同步练习册答案