精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)=x3+3ax2+3bx+c在x=2处有极值,其图象在x=1处的切线平行于直线6x+2y+5=0,则f(x)极大值与极小值之差为
4
4
分析:先对函数进行求导,由题意可得f′(2)=0,f′(1)=-3,代入可求出a、b的值,进而可以求出函数的单调区间,函数的极大值为f(0)=c,极小值为f(2)=c-4,即可得出函数的极大值与极小值的差
解答:解:对函数求导可得f′(x)=3x2+6ax+3b,
因为函数f(x)在x=2取得极值,所以f′(2)=3•22+6a•2+3b=0
即4a+b+4=0①
又因为图象在x=1处的切线与直线6x+2y+5=0平行
所以f′(1)=3+6a+3b=-3
即2a+b+2=0②
联立①②可得a=-1,b=0
所以f′(x)=3x2-6x=3x(x-2)
当f′(x)>0时,x<0或x>2;当f′(x)<0时,0<x<2
∴函数的单调增区间是 (-∞,0)和(2,+∞);函数的单调减区间是(0,2)
因此求出函数的极大值为f(0)=c,极小值为f(2)=c-4
故函数的极大值与极小值的差为c-(c-4)=4
故答案为4
点评:本题主要考查函数在某点取得极值的条件和导数的几何意义,以及利用导数解决函数在闭区间上的最值问题和函数恒成立问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、已知函数y=f(x)是R上的奇函数且在[0,+∞)上是增函数,若f(a+2)+f(a)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

2、已知函数y=f(x+1)的图象过点(3,2),则函数f(x)的图象关于x轴的对称图形一定过点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是偶函数,当x<0时,f(x)=x(1-x),那么当x>0时,f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的奇函数,当x>0 时,f(x)的图象如图所示,则不等式x[f(x)-f(-x)]≤0 的解集为
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象如图,则满足f(log2(x-1))•f(2-x2-1)≥0的x的取值范围为
(1,3]
(1,3]

查看答案和解析>>

同步练习册答案