精英家教网 > 高中数学 > 题目详情
(8分)
已知四边形是空间四边形,分别是边的中点,求证:四边形是平行四边形。
证明 由题意知EH  BD   FG  BD  ∴EHFG
∴四边形是平行四边形
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,四棱锥的底面为菱形,平面分别为的中点,

(Ⅰ)求证:平面
(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)
如图,在三棱柱中,已知侧面

(1)求直线与底面ABC所成角正切值;
(2)在棱(不包含端点上确定一点的位置,使得(要求说明理由).
(3)在(2)的条件下,若,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共10分)
三棱柱ABC—A1B1C1中,CC1⊥平面ABC,△ABC是边长为2的等边三角形,D为AB边中点,且CC1=2AB.

(1)(4′)求证:平面C1CD⊥平面ABC;
(2)(6′)求三棱锥D—CBB1的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
如图,已知正三棱柱的底面正三角形的边长是2,D是的中点,直线与侧面所成的角是.

⑴求二面角的大小;
⑵求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱锥P-ABCD中,底面为正文形,PA平面ABCD,且PA=AD,E为棱PC上的一点,PD平面ABE
(I)求证:E为PC的中点
(II)若N为CD中点,M为AB上的动点,当直线MN与平面ABE所成的角最大时,求二面角C-EM—N的大小

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,四边形ABCD为正方形,PD平面ABCD,PD=AD=2。

(1)求PC与平面PBD所成的角;
(2)在线段PB上是否存在一点E,使得平面ADE?并说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,点P在正方形ABCD所在平面外,PD⊥平面ABCDPDAD,则PABD所成角的度数为            .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

异面直线是指(    )
A.不相交的两条直线B.分别位于两个平面内的直线
C.一个平面内的直线和不在这个平面内的直线D.不同在任何一个平面内的两条直线

查看答案和解析>>

同步练习册答案