精英家教网 > 高中数学 > 题目详情

【题目】2016年美国总统大选过后,有媒体从某公司的全体员工中随机抽取了200人,对他们的投票结果进行了统计(不考虑弃权等其他情况),发现支持希拉里的一共有95人,其中女员工55人,支持特朗普的男员工有60人.
(Ⅰ)根据已知条件完成下面的2×2列联表:据此材料,是否有95%的把握认为投票结果与性别有关?

支持希拉里

支持特朗普

合计

男员工

女员工

合计

(Ⅱ)若从该公司的所有男员工中随机抽取3人,记其中支持特朗普的人数为X,求随机变量X的分布列和数学期望.(用相应的频率估计概率)
附:

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

K0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:K2= ,其中n=a+b+c+d)

【答案】解:(Ⅰ)根据已知条件,可得2×2列联表:

支持希拉里

支持特朗普

合计

男员工

40

60

100

女员工

55

45

100

合计

95

105

200

K2= ≈4.51>3.841,∴有95%的把握认为投票结果与性别有关.
(Ⅱ)支持特朗普的概率为 并且X~(3, ).X=0,1,2,3
P(X=0)=C303=
P(X=1)=C31 )( 2=
P(X=2)=C322 )=
P(X=3)=C333=
其分布列如下:

X

0

1

2

3

P

∴E(X)=3× =
【解析】(Ⅰ)根据条件中所给的数据,写出列联表;根据列联表和求观测值的公式,把数据代入公式,求出观测值,把观测值同临界值进行比较,得到有95%的把握认为投票结果与性别有关.(Ⅱ)X可能取值为0,1,2,3,X~B(3, ),求出相应的概率,可得X的分布列及数学期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了普及环保知识,增强环保意识,某校从理科甲班抽取60人,从文科乙班抽取50人参加环保知识测试.
(Ⅰ)根据题目条件完成下面2×2列联表,并据此判断是否有99%的把握认为环保知识成绩优秀与学生的文理分类有关.

优秀人数

非优秀人数

总计

甲班

乙班

30

总计

60

(Ⅱ)现已知A,B,C三人获得优秀的概率分别为 ,设随机变量X表示A,B,C三人中获得优秀的人数,求X的分布列及期望E(X).
附: ,n=a+b+c+d

P(K2>k0

0.100

0.050

0.025

0.010

0.005

k0

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,四边形ABCD中,AB∥CD,AD⊥AB,AB=2CD=4,AD=2,过点C作CO⊥AB,垂足为O,将△OBC沿CO折起,如图2使得平面CBO与平面AOCD所成的二面角的大小为θ(0<θ<π),E,F分别为BC,AO的中点
(1)求证:EF∥平面ABD
(2)若θ= ,求二面角F﹣BD﹣O的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线C的顶点在原点O,过点,其焦点Fx轴上.

求抛物线C的标准方程;

斜率为1且与点F的距离为的直线x轴交于点M,且点M的横坐标大于1,求点M的坐标;

是否存在过点M的直线l,使lC交于PQ两点,且若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1 , F2是双曲线C1 =1(a>0,b>0)的左、右焦点,且F2是抛物线C2:y2=2px(p>0)的焦点,P是双曲线C1与抛物线C2在第一象限内的交点,线段PF2的中点为M,且|OM|= |F1F2|,其中O为坐标原点,则双曲线C1的离心率是(
A.2+
B.1+
C.2+
D.1+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx.
(Ⅰ)设函数g(x)= ,求g(x)的单调区间;
(Ⅱ)若方程f(x)=t有两个不相等的实数根x1 , x2 , 求证:x1+x2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,A,B,C为的a、b、c所对的角,若
(1)求A;
(2)若 ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=ex(x2+ax+b)有极值点x1 , x2(x1<x2),且f(x1)=x1 , 则关于x的方程f2(x)+(2+a)f(x)+a+b=0的不同实根个数为(
A.0
B.3
C.4
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一网站营销部为统计某市网友2017年12月12日在某网店的网购情况,随机抽查了该市60名网友在该网店的网购金额情况,如下表:

网购金额(单位:千元)

频数

频率

网购金额(单位:千元)

频数

频率

[0,0.5)

3

0.05

[1.5,2)

15

0.25

[0.5,1)

[2,2.5)

18

0.30

[1,1.5)

9

0.15

[2.5,3]

若将当日网购金额不小于2千元的网友称为“网购达人”,网购金额小于2千元的网友称为“网购探者”,已知“网购达人”与“网购探者”人数的比例为2:3.

(1)确定的值,并补全频率分布直方图;

(2)①.试根据频率分布直方图估算这60名网友当日在该网店网购金额的平均数和中位数;

②.若平均数和中位数至少有一个不低于2千元,则该网店当日评为“皇冠店”,试判断该网店当日能否被评为“皇冠店”.

查看答案和解析>>

同步练习册答案