精英家教网 > 高中数学 > 题目详情
8.已知无穷等比数列{an}的所有项的和为3,则a1的取值范围为{x|0<x<6,且x≠3}.

分析 由题意可得:$\frac{{a}_{1}}{1-q}$=3,0<|q|<1,解出即可得出.

解答 解:由题意可得:$\frac{{a}_{1}}{1-q}$=3,0<|q|<1,
∴a1=3(1-q)∈(0,6),且a1≠3.
∴a1的取值范围为{x|0<x<6,且x≠3}.
故答案为:{x|0<x<6,且x≠3}.

点评 本题考查了等比数列的通项公式及其前n项和公式性质、极限的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.定义在[-1,1]上的函数y=f(x)是增函数,且是奇函数,若f(a-1)+f(4a-5)>0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.直线2x-y-3=0关于x轴对称的直线方程为2x+y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.我校为进行“阳光运动一小时”活动,计划在一块直角三角形ABC的空地上修建一个占地面积为S(平方米)的矩形AMPN健身场地.如图,点M在AC上,点N在AB上,且P点在斜边BC上.已知∠ACB=60°,|AC|=30米,|AM|=x米,x∈[10,20].设矩形AMPN健身场地每平方米的造价为$\frac{37k}{{\sqrt{S}}}$元,再把矩形AMPN以外(阴影部分)铺上草坪,每平方米的造价为$\frac{12k}{{\sqrt{S}}}$元(k为正常数).
(1)试用x表示S,并求S的取值范围;
(2)求总造价T关于面积S的函数T=f(S);
(3)如何选取|AM|,使总造价T最低(不要求求出最低造价).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.解不等式:$\frac{4}{x-1}$≤x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知集合A={x|x≤a},B={x|-2≤x<1},若A∪B=A,则实数a的取值范围是a≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.自然状态下的鱼类是一种可再生资源,为了持续利用这一资源,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响.用xn表示某鱼群在第n年年初的总量且x1>0.不考虑其他因素,设在第n年内鱼群的繁殖量及捕捞量都与xn成正比,死亡量与$x_n^2$成正比,这些比例系数依次为正常数a,b,c
(1)求xn+1与xn的关系式
(2)若每年年初鱼群的总量保持不变,求x1,a,b,c所应满足的条件
(3)设a=2,c=1,为保证对任意x1∈(0,2),都有xn>0,则捕捞强度b的最大允许值是多少?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知实数x,y满足x2+y2≤1,则
(1)(x+2)2+(y-2)2的最小值是9-4$\sqrt{2}$;
(2)|2x+y-4|+|6-x-3y|的最大值是15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在如图所示的正方体中.
(1)指出哪些棱与BB1是异面直线,哪些棱与对角线BD1是异面直线.
(2)分别求出直线DD1与BC1、A1D1及DC1所成的角度.

查看答案和解析>>

同步练习册答案