精英家教网 > 高中数学 > 题目详情
若直角坐标平面内的两个不同的点A、B满足以下两个条件:
①A、B都在函数y=f(x)的图象上;
②A、B关于原点对称.
则称点对[A,B]为函数y=f(x)的一对“好朋友”(注:点对[A,B]与[B,A]为同一“好朋友”)已知函数f(x)=
lnx(x>0)
-x2-3x(x≤0)
,则此函数的“好朋友”有(  )
A、0对B、1对C、2对D、3对
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=xtanx,x∈(-
2
2
)且x≠±
π
2
,则该函数的图象大致是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象与函数y=log2
x
2
)的图象关于y=x对称,则函数f(x)解析式为(  )
A、f(x)=2x
B、f(x)=2x+1
C、f(x)=(
1
2
x
D、f(x)=(
1
2
x+1

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=2x+log2x的零点的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义符号函数sgnx=
1,  x>0
0,  x=0
-1,  x<0
,设函数f(x)=
sgn(1-x)+1
2
•f1(x)+
sgn(x-1)
2
•f2(x),x∈(0,2)其中f1(x)=x2+1,f2(x)=-2x+4.若f(f(a))∈(0,1),则实数a的取值范围是(  )
A、(0,
2
2
B、(1,
5
4
C、(0,
2
2
)∪(1,
5
4
D、(
2
2
,1)∪(1,
5
4

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)和定义在{x|x≠0}上的偶函数g(x)分别满足f(x)=
2x-1(0≤x≤1)
1
x
(x≥1)
,g(x)=log2x(x>0),若存在实数a,使得f(a)=g(b)成立,则实数b的取值范围是(  )
A、[-2,2]
B、[-2,-
1
2
]∪[
1
2
,2]
C、[-
1
2
,0)∪(0,
1
2
]
D、(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
ex, x≥4
f(x+1), x<4
,则f(ln4)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x(x≥3)
f(x+1)(x<3)
,则f(log23)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b表示两条直线,M表示平面,给出下列四个命题:
①若a∥M,b∥M,则a∥b;
②若b?M,a?M,a∥b,则a∥M;
③若a⊥b,b?M,则a⊥M;
④若a⊥M,a⊥b,则b∥M,
其中正确命题的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

同步练习册答案