已知圆x2+y2-6mx-2(m-1)y+10m2-2m-24=0(m∈R).
(1)求证:不论m为何值,圆心在同一直线l上;
(2)与l平行的直线中,哪些与圆相交、相切、相离;
(3)求证:任何一条平行于l且与圆相交的直线被各圆截得的弦长相等.
(1)证明略(2)当-5-3<b<5-3时,直线与圆相交;
当b=±5-3时,直线与圆相切;当b<-5-3或b>5-3时,直线与圆相离.
(3)证明略
(1)证明 配方得:(x-3m)2+[y-(m-1)]2=25,
设圆心为(x,y),则消去m得
l:x-3y-3=0,则圆心恒在直线l:x-3y-3=0上.
(2)解 设与l平行的直线是l1:x-3y+b=0,
则圆心到直线l1的距离为
d=.
∵圆的半径为r=5,
∴当d<r,即-5-3<b<5-3时,直线与圆相交;
当d=r,即b=±5-3时,直线与圆相切;
当d>r,即b<-5-3或b>5-3时,直线与圆相离.
(3)证明 对于任一条平行于l且与圆相交的直线l1:x-3y+b=0,由于圆心到直线l1的距离d=,
弦长=2且r和d均为常量.
∴任何一条平行于l且与圆相交的直线被各圆截得的弦长相等.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com