精英家教网 > 高中数学 > 题目详情
如图,已知正方体的棱长为2,E、F分别是的中点,过、E、F作平面于G.
(l)求证:EG∥
(2)求二面角的余弦值;
(3)求正方体被平面所截得的几何体的体积.
(1)详见试题解析(2) (3)

试题分析:(1)两平行平面都与第三个平面相交,则交线平行;
(2)以为原点分别以轴,建立空间直角坐标系,平面的法向量为,求出平面的法向量,利用空间向量的夹角公式求二面角的余弦值.
(3)所求几何体是由正方体截去一个三棱台而得到, 所以,
(1)证明:在正方体中,因为平面平面,
平面平面平面平面

(2)解:如图,以为原点分别以轴,建立空间直角坐标系,
则有

设平面的法向量为则由

又平面的法向量为

所以截面与底面所成二面角的余弦值为
(3)解:设所截几何体的体积为
相似,




练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,,M是线段AE上的动点.
(1)试确定点M的位置,使AC∥平面MDF,并说明理由;
(2)在(1)的条件下,求平面MDF将几何体ADE-BCF分成的两部分的体积之比.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,AB是圆O的直径,点C是弧AB的中点,点V是圆O所在平面外一点,是AC的中点,已知
(1)求证:AC⊥平面VOD;
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在五面体中,已知平面

(1)求证:
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面为直角梯形,且,平面底面的中点,是棱的中点,.

(1)求证:平面
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在正三棱柱中,,异面直线所成角的大小为,该三棱柱的体积为               

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若一个正方体的表面积为S1,其外接球的表面积为S2,则=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体ABCD﹣A1B1C1D1中,E为线段B1D1上的一个动点,则下列结论中错误的是(  )
A.AC⊥BE
B.B1E∥平面ABCD
C.三棱锥E﹣ABC的体积为定值
D.直线B1E⊥直线BC1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某四棱台的三视图如图所示,则该四棱台的体积是(    )
A.4
B.
C.
D.6

查看答案和解析>>

同步练习册答案