精英家教网 > 高中数学 > 题目详情

【题目】“抛阶砖”是国外游乐场的典型游戏之一.参与者只将手上的“金币”(设“金币”的半径为1)抛向离身边若干距离的阶砖平面上,抛出的“金币”若恰好落在任何一个阶砖(边长为2.1的正方形)的范围内(不与阶砖相连的线重叠),便可获大奖.不少人被高额奖金所吸引,纷纷参与此游戏但很少有人得到奖品,请用所学的概率知识解释这是为什么.

【答案】见解析

【解析】可以判定此试验为几何概型,我们为了描述每一次随机试验的结果只需要确定金币圆心O的位置即可,一旦圆心位置确定,只要当圆心O到最近正方形的各边的距离大于半径时,便可获大奖.由此不难想到一种临界状态,就是当金币与正方形的一边相切时,此时圆心O到该边的距离为1,显然只有当圆心O到最近正方形的各边的距离大于1时才能获奖,所以若中奖,金币圆心必位于小正方形区域A其概率≈0.0023,概率很小,所以很少有人得到奖品.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在点处的切线.

(Ⅰ)求的解析式;

(Ⅱ)求证:

(Ⅲ)设,其中.若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆的左、右焦点分别为,定点A(-2,0),B(2,0).

(1) 若椭圆C上存在点T,使得,求椭圆C的离心率的取值范围;

(2) 已知点在椭圆C上.

①求椭圆C的方程;

②记M为椭圆C上的动点,直线AMBM分别与椭圆C交于另一点PQ,若 .求λμ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形和梯形所在平面互相垂直 , .

(Ⅰ)求证 平面;

(Ⅱ)当的长为何值时,二面角的大小为60°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(Ⅰ)若,求的极小值;

(Ⅱ)在(Ⅰ)的条件下,是否存在实常数,使得?若存在,求出的值.若不存在,说明理由;

(Ⅲ)设有两个零点,且成等差数列,试探究值的符号.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班级有50名学生,其中有30名男生和20名女生.随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是( )

A.这种抽样方法是一种分层抽样

B.这种抽样方法是一种系统抽样

C.这五名男生成绩的方差大于这五名女生成绩的方差

D.该班男生成绩的平均数小于该班女生成绩的平均数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)若曲线与直线相切于点,求点的坐标.

)令,当时,求的单调区间.

)当,证明:当

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2015年12月10日,我国科学家屠呦呦教授由于在发现青蒿素和治疗疟疾的疗法上的贡献获得诺贝尔医学奖,以青蒿素类药物为主的联合疗法已经成为世界卫生组织推荐的抗疟疾标准疗法,目前,国内青蒿人工种植发展迅速,调查表明,人工种植的青蒿的长势与海拨高度、土壤酸碱度、空气湿度的指标有极强的相关性,现将这三项的指标分别记为,并对它们进行量化:0表示不合格,1表示临界合格,2表示合格,再用综合指标的值评定人工种植的青蒿的长势等级,若,则长势为一级;若,则长势为二极;若,则长势为三级,为了了解目前人工种植的青蒿的长势情况,研究人员随机抽取了10块青蒿人工种植地,得到如下结果:

种植地编号

种植地编号

1若该地有青蒿人工种植地180个,试估计该地中长势等级为三级的个数;

2从长势等级为一级的青蒿人工种植地中随机抽取两个,求这两个人工种植地的综合指标均为4个概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,已知直线上两点的极坐标分别为,圆的参数方程为为参数).

1)设为线段的中点,求直线的平面直角坐标方程;

2)判断直线与圆的位置关系.

查看答案和解析>>

同步练习册答案