【题目】已知椭圆的四个顶点围成的菱形的面积为,椭圆的一个焦点为圆的圆心.
(1)求椭圆的方程;
(2)若M,N为椭圆上的两个动点,直线OM,ON的斜率分别为,当时,△MON的面积是否为定值?若为定值,求出此定值;若不为定值,说明理由.
科目:高中数学 来源: 题型:
【题目】程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作,它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个,问该若干?”如图是解决该问题的程序框图,执行该程序框图,求得该垛果子的总数为( )
A. 120 B. 84 C. 56 D. 28
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,是函数的图像上任意不同的两点,依据图像可知,线段总是位于两点之间函数图像的上方,因此有结论成立,运用类比的思想方法可知,若点,是函数的图像上任意不同的两点,则类似地有_________成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如下图,梯形中,∥,,, ,将沿对角线折起.设折起后点的位置为,并且平面 平面.给出下面四个命题:
①;②三棱锥的体积为;③ 平面;
④平面平面.其中正确命题的序号是( )
A. ①② B. ③④ C. ①③ D. ②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱中,侧面是矩形,,,,且.
(1)求证:平面平面;
(2)设是的中点,判断并证明在线段上是否存在点,使平面,若存在,求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AD⊥平面PCD,PD⊥CD,底面ABCD是梯形,AB∥DC,AB=AD=PD=1,CD=2AB, 为棱PC上一点.
(Ⅰ)若点是PC的中点,证明:B∥平面PAD;
(Ⅱ) 试确定的值使得二面角-BD-P为60°.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着我国经济的发展,居民的储蓄存款逐年增长,设某地区城乡居民人民币储蓄存款(单位:亿元)的数据如下:
(1)求关于的线性回归方程;
(2)2018年城乡居民储蓄存款前五名中,有三男和两女.现从这5人中随机选出2人参加某访谈节目,求选中的2人性别不同的概率.
附:回归直线的斜率和截距的最小二乘估计公式分别为: ,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com