精英家教网 > 高中数学 > 题目详情

【题目】如图,已知四棱锥S﹣ABCD,SB⊥AD,侧面SAD是边长为4的等边三角形,底面ABCD为菱形,侧面SAD与底面ABCD所成的二面角为120°.

(1)求点S到平面ABCD的距离;
(2)若E为SC的中点,求二面角A﹣DE﹣C的正弦值.

【答案】
(1)

解:如图,作SO⊥平面ABCD,垂足为点O.

连接OB,OA,OD,OB与AD交于点F,连接SF.

∵SB⊥AD,

∴OB⊥AD.

∵SA=SD,

∴OA=OD.

∴点F为AD的中点,所以SF⊥AD.

由此知∠SFB为侧面SAD与底面ABCD所成的二面角的平面角,

∴∠SFB=120°,

∵侧面SAD是边长为4的等边三角形,

∴SF= =2

∴SO=SFsin60°=2 =3,

即点S到平面ABCD的距离为3


(2)

解:如图以O为坐标原点,使y轴与BC平行,OB,OS所在直线分别为y轴、z轴建立空间直角坐标系,

由已知得:A( ,2,0),D( ,0),C(3 ,﹣4,0),E( ,﹣2, ),

=(0,﹣4,0), =( ,0, ), =(﹣ ,2, ),

设平面ADE的法向量为

令x= ,得 =( ,0,﹣1).

设平面DEC的法向量为 =(x,y,z),

,令x= ,得 =( ,3,﹣1),

设二面角的平面角为θ,

则cosθ= = =

∴sinθ= =

∴二面角A﹣DE﹣C的正弦值为


【解析】(1)解:作SO⊥平面ABCD,连接OB,OA,OD,OB与AD交于点F,连接SF.推导出OB⊥AD,SF⊥AD.从而∠SFB为侧面SAD与底面ABCD所成的二面角的平面角,由此能求出点S到平面ABCD的距离.(2)以O为坐标原点,使y轴与BC平行,OB,OS所在直线分别为y轴、z轴建立空间直角坐标系,利用向量法能求出二面角A﹣DE﹣C的正弦值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,椭圆的左、右焦点为,右顶点为,上顶点为,若 轴垂直,且.

(1)求椭圆方程;

(2)过点且不垂直于坐标轴的直线与椭圆交于两点,已知点,当时,求满足的直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .若gx)存在2个零点,则a的取值范围是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,

有零点 m 的取值范围;

确定 m 的取值范围使得有两个相异实根.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点及圆.

1)若直线过点且被圆截得的线段长为的方程;

(2)求过点的圆的弦的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1 , F2分别为椭圆C: + =1(a>b>0)的左、右两个焦点,椭圆上点M( )到F1、F2两点的距离之和等于4.
(1)求椭圆C的方程;
(2)已知过右焦点且垂直于x轴的直线与椭圆交于点N(点N在第一象限),E,F是椭圆C上的两个动点,如果kEN+KFN=0,证明直线EF的斜率为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】BD是等腰直角三角形△ABC腰AC上的中线,AM⊥BD于点M,延长AM交BC于点N,AF⊥BC于点F,AF与BD交于点E.

(1)求证;△ABE≌△ACN;
(2)求证:∠ADB=∠CDN.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,若存在x1 , x2 , 当0≤x1<x2<2时,f(x1)=f(x2),则x1f(x2)﹣f(x2)的取值范围为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面四边形ABCD内接于圆O,AC是圆O的一条直径,PA⊥平面ABCD,PA=AC=2,E是PC的中点,∠DAC=∠AOB

(1)求证:BE∥平面PAD;
(2)若二面角P﹣CD﹣A的正切值为2,求直线PB与平面PCD所成角的正弦值.

查看答案和解析>>

同步练习册答案