【题目】如图,已知四棱锥S﹣ABCD,SB⊥AD,侧面SAD是边长为4的等边三角形,底面ABCD为菱形,侧面SAD与底面ABCD所成的二面角为120°.
(1)求点S到平面ABCD的距离;
(2)若E为SC的中点,求二面角A﹣DE﹣C的正弦值.
【答案】
(1)
解:如图,作SO⊥平面ABCD,垂足为点O.
连接OB,OA,OD,OB与AD交于点F,连接SF.
∵SB⊥AD,
∴OB⊥AD.
∵SA=SD,
∴OA=OD.
∴点F为AD的中点,所以SF⊥AD.
由此知∠SFB为侧面SAD与底面ABCD所成的二面角的平面角,
∴∠SFB=120°,
∵侧面SAD是边长为4的等边三角形,
∴SF= =2 ,
∴SO=SFsin60°=2 =3,
即点S到平面ABCD的距离为3
(2)
解:如图以O为坐标原点,使y轴与BC平行,OB,OS所在直线分别为y轴、z轴建立空间直角坐标系,
由已知得:A( ,2,0),D( ,0),C(3 ,﹣4,0),E( ,﹣2, ),
=(0,﹣4,0), =( ,0, ), =(﹣ ,2, ),
设平面ADE的法向量为 ,
则 令x= ,得 =( ,0,﹣1).
设平面DEC的法向量为 =(x,y,z),
则 ,令x= ,得 =( ,3,﹣1),
设二面角的平面角为θ,
则cosθ= = = ,
∴sinθ= = ,
∴二面角A﹣DE﹣C的正弦值为
【解析】(1)解:作SO⊥平面ABCD,连接OB,OA,OD,OB与AD交于点F,连接SF.推导出OB⊥AD,SF⊥AD.从而∠SFB为侧面SAD与底面ABCD所成的二面角的平面角,由此能求出点S到平面ABCD的距离.(2)以O为坐标原点,使y轴与BC平行,OB,OS所在直线分别为y轴、z轴建立空间直角坐标系,利用向量法能求出二面角A﹣DE﹣C的正弦值.
科目:高中数学 来源: 题型:
【题目】如图,椭圆的左、右焦点为,右顶点为,上顶点为,若, 与轴垂直,且.
(1)求椭圆方程;
(2)过点且不垂直于坐标轴的直线与椭圆交于两点,已知点,当时,求满足的直线的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F1 , F2分别为椭圆C: + =1(a>b>0)的左、右两个焦点,椭圆上点M( , )到F1、F2两点的距离之和等于4.
(1)求椭圆C的方程;
(2)已知过右焦点且垂直于x轴的直线与椭圆交于点N(点N在第一象限),E,F是椭圆C上的两个动点,如果kEN+KFN=0,证明直线EF的斜率为定值,并求出这个定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】BD是等腰直角三角形△ABC腰AC上的中线,AM⊥BD于点M,延长AM交BC于点N,AF⊥BC于点F,AF与BD交于点E.
(1)求证;△ABE≌△ACN;
(2)求证:∠ADB=∠CDN.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 ,若存在x1 , x2 , 当0≤x1<x2<2时,f(x1)=f(x2),则x1f(x2)﹣f(x2)的取值范围为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面四边形ABCD内接于圆O,AC是圆O的一条直径,PA⊥平面ABCD,PA=AC=2,E是PC的中点,∠DAC=∠AOB
(1)求证:BE∥平面PAD;
(2)若二面角P﹣CD﹣A的正切值为2,求直线PB与平面PCD所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com