精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线Cx22pyp0)的焦点为F,直线l与抛物线C交于PQ两点.

1)若l过点F,抛物线C在点P处的切线与在点Q处的切线交于点G.证明:点G在定直线上.

2)若p2,点M在曲线y上,MPMQ的中点均在抛物线C上,求△MPQ面积的取值范围.

【答案】1)证明见解析(2

【解析】

1)设,根据条件分别求出直线PG的方程,QG的方程,联立可得,化简得到点G在定直线上.

2)设,表示出的面积.结合在曲线y上,即可求出面积的取值范围.

1)证明:易知,设

由题意可知直线l的斜率存在,故设其方程为

,得,所以

,得,则

直线PG的方程为,即①.

同理可得直线QG的方程为②.

联立①②,可得

因为,所以,故点G在定直线上.

2)设

的中点分别为

因为得中点均在抛物线上,

所以为方程的解,

即方程的两个不同的实根,

,即

所以的中点的横坐标为,纵坐标为.

所以的面积

,得

所以

因为,所以

所以面积的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的最小值为0,其中.

1)求的值;

2)若对任意的,有恒成立,求实数的最小值;

3)记为不超过的最大整数,求的值.

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,与等边所在的平面相互垂直,为线段中点,直线与平面交于点..

1)求证:平面平面

2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)函数在区间)上有零点,求k的值;

2)若不等式对任意正实数x恒成立,求正整数m的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂共有50位工人组装某种零件.下面的散点图反映了工人们组装每个零件所用的工时(单位:分钟)与人数的分布情况.由散点图可得,这50位工人组装每个零件所用工时的中位数为___________.若将500个要组装的零件分给每个工人,让他们同时开始组装,则至少要过_________分钟后,所有工人都完成组装任务.(本题第一空2分,第二空3分)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国有十二生肖,又叫十二属相,是以十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)形象化代表人的出生年份,现有十二生肖的吉祥物各一个,三位属相不同的小朋友依次每人选一个,则三位小朋友都不选和自己属相相同的吉祥物的选法有________种.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面,且.


1)过作截面与线段交于点H,使得平面,试确定点H的位置,并给出证明;

2)在(1)的条件下,若二面角的大小为,试求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)=|xa|+|x+b|ab0.

1)当a1b1时,求不等式fx)<3的解集;

2)若fx)的最小值为2,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业引进现代化管理体制,生产效益明显提高.2018年全年总收入与2017年全年总收入相比增长了一倍,实现翻番.同时该企业的各项运营成本也随着收入的变化发生了相应变化.下图给出了该企业这两年不同运营成本占全年总收入的比例,下列说法正确的是(

A.该企业2018年原材料费用是2017年工资金额与研发费用的和

B.该企业2018年研发费用是2017年工资金额、原材料费用、其它费用三项的和

C.该企业2018年其它费用是2017年工资金额的

D.该企业2018年设备费用是2017年原材料的费用的两倍

查看答案和解析>>

同步练习册答案