精英家教网 > 高中数学 > 题目详情
已知二面角α-l-β的大小为60°,点A∈α,AC⊥l,C为垂足,点B∈β,BD⊥l,D为垂足,若AB=2,AC=BD=1,则CD=______.
∵点A∈α,AC⊥l,C为垂足,点B∈β,BD⊥l,D为垂足,二面角α-l-β的大小为60°,
∴<
CA
BD
>=120°,且|
CA
|=|
BD
|=1,|
AB
|=2
CA
AB
=0,
BD
AB
=0,
CA
BD
=-
1
2

CD
=
CA
+
AB
+
BD

∴|
CD
|=|
CA
+
AB
+
BD
|=
(
CA
+
AB
+
BD
)2
=
CA
2
+
AB
2
+
BD
2
+2
CA
AB
+2
BD
AB
+2
CA
BD
=
1+4+1-1
=
5

故答案为:
5
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在正三棱柱ABC-A1B1C1中,点D,D1分别为棱BC,B1C1的中点.
(1)求证:直线A1D1平面ADC1
(2)求证:平面ADC1⊥平面BCC1B1
(3)设底面边长为2,侧棱长为4,求二面角C1-AD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知正方形ABCD沿其对角线AC将△ADC折起,设AD与平面ABC所成的角为β,当β取最大值时,二面角B-AC-D的大小为(  )
A.120°B.90°C.60°D.45°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M是A1B的中点.
(Ⅰ)在线段B1C1上是否存在一点N,使得MN⊥平面A1BC?若存在,找出点N的位置幷证明;若不存在,请说明理由;
(Ⅱ)求平面A1AB和平面A1BC所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

三棱柱ABC-A1B1C1中,∠ABC=90°,BB1⊥底面ABC,D为棱AC的中点,E为棱A1C1的中点,且AB=BC=BB1=1.
(1)求证:CE平面BA1D.
(2)求二面角A1-BD-C的余弦值.
(3)棱CC1上是否存在一点P,使PD⊥平面A1BD,若存在,试确定P点位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,侧棱SA⊥底面ABCD,AB垂直于AD和BC,SA=AB=BC=2,AD=1,M是棱SB的中点.
(Ⅰ)求证:AM面SCD;
(Ⅱ)求面SCD与面SAB所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知斜三棱柱ABC-A1B1C1的底面是直角三角形,∠C=90°,侧棱与底面所成的角为α(0°<α<90°),点B1在底面上的射影D落在BC上.
(1)求证:AC⊥平面BB1C1C;
(2)当α为何值时,AB1⊥BC1,且使点D恰为BC中点?
(3)(理科做)当α=arccos
1
3
,且AC=BC=AA1时,求二面角C1-AB-C的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,梯形ABCD中,ADBC,∠ABC=
π
2
,AB=a,AD=3a,∠ADC=arcsin
5
5
,PA⊥面ABCD,PA=a.求:
(1)二面角P-CD-A的大小(用反三角函数表示);
(2)点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是一个平面,则下列命题不正确的是(    )
A.若,则B.若,则
C.若,则D.若,,则

查看答案和解析>>

同步练习册答案