精英家教网 > 高中数学 > 题目详情
(1)已知x>0,y>0,求证
x2
x+y
3x-y
4
;(2)已知a、b是正数,求证
a2
b
+
b2
a
>a.
分析:(1)根据 x>0,y>0,
x2
x+y
-
3x-y
4
=
4x2-(x+y)(3x-y)
4(x+y)
=
(x-y)2
4(x+y)
≥0,从而得到
x2
x+y
3x-y
4
成立.
2)由于 a、b是正数,可得(a-b)2(a+b)≥0,即 a3+b3-a2b-ab2≥0,移项两边同时除以ab 可得
a2
b
+
b2
a
≥a+b>a.
解答:证明:(1)∵x>0,y>0,
x2
x+y
-
3x-y
4
=
4x2-(x+y)(3x-y)
4(x+y)
=
(x-y)2
4(x+y)
≥0,
x2
x+y
3x-y
4
成立.
证明:(2)∵a、b是正数,∴(a-b)2(a+b)≥0,∴a3+b3-a2b-ab2≥0,
∴a3+b3≥a2b+ab2,两边同时除以ab 可得 
a2
b
+
b2
a
≥a+b>a,故
a2
b
+
b2
a
>a 成立.
点评:本题主要考查用比较法和综合法证明不等式,注意这两种方法间的关系是互逆的,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求下列各题的最值.
(1)已知x>0,y>0,lgx+lgy=1,,求z=
2
x
+
5
y
的最小值;
(2)x>0,求f(x)=
12
x
+3x的最小值

(3)x<3,求f(x)=
4
x-3
+x的最大值

(4)x∈R,求f(x)=sin2x+1+
5
sin2x+1
的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知x>0,y>0,且
1
x
+
9
y
=1,求x+y的最小值;
(2)已知x<
5
4
,求函数y=4x-2+
1
4x-5
的最大值;
(3)若x,y∈(0,+∞)且2x+8y-xy=0,求x+y的最小值;
(4)若-4<x<1,求
x2-2x+2
2x-2
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知x>0,y>0,且
1
x
+
9
y
=2,求x+y的最小值.
(2)已知x,y∈R+,且满足
x
3
+
y
4
=1,求xy的最大值.
(3)若对任意x<1,
x2+3
x-1
≤a
恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年河北省保北十二县市高一(下)期中数学试卷(解析版) 题型:解答题

(1)已知x>0,y>0,且+=2,求x+y的最小值.
(2)已知x,y∈R+,且满足=1,求xy的最大值.
(3)若对任意x<1,恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案