精英家教网 > 高中数学 > 题目详情

【题目】椭圆)的离心率是,点在短轴上,且

(1)球椭圆的方程;

(2)设为坐标原点,过点的动直线与椭圆交于两点。是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由

【答案】(1);(2)见解析.

【解析】)由已知,点CD的坐标分别为(0,-b),(0b

又点P的坐标为(01),且=-1

于是,解得a2b

所以椭圆E方程为.

)当直线AB斜率存在时,设直线AB的方程为ykx1

AB的坐标分别为(x1y1),(x2y2

联立,得(2k21x24kx20

其判别式=(4k282k21)>0

所以

从而x1x2y1y2λ[x1x2+(y11)(y21]

=(1λ)(1k2x1x2kx1x2)+1

=-

所以,当λ1时,-=-3

此时, =-3为定值

当直线AB斜率不存在时,直线AB即为直线CD

此时=-21=-3

故存在常数λ=-1,使得为定值-3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】供电部门对某社区1000位居民2017年12月份人均用电情况进行统计后,按人均用电量分为五组,整理得到如下的频率分布直方图,则下列说法错误的是( )

A. 12月份人均用电量人数最多的一组有400人

B. 12月份人均用电量不低于20度的有500人

C. 12月份人均用电量为25度

D. 在这1000位居民中任选1位协助收费,选到的居民用电量在—组的概率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的离心率是过点的动直线与椭圆相交于两点当直线轴平行时直线被椭圆截得的线段长为.

(Ⅰ)求椭圆的方程

(Ⅱ)在轴上是否存在异于点的定点使得直线变化时总有若存在求出点的坐标若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】网格纸的各小格都是边长为1的正方形,图中粗实线画出的是一个几何体的三视图,其中正视图是正三角形,则该几何体的外接球表面积为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在等腰梯形 四边形为矩形平面平面 .

1)求证: 平面

2)点在线段上运动设平面与平面所成二面角的平面角为试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个正整数,若它的每个质因数都至少是两重的(即每个质因数乘方次数都不小于2),则称该正整数为“漂亮数”.相邻两个正整数皆为“漂亮数”,就称它们是一对“孪生漂亮数”.例如89就是一对“孪生漂亮数”.请你再找出两对“孪生漂亮数”来.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x+1|+|x﹣3|
(1)求函数f(x)的最小值;
(2)若{x|f(x)≤t2﹣3t}∩{x|﹣2≤x≤0}≠.求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P-ABCD的底面为平行四边形,MPC中点.

(1)求证:BA平面PCD

(2)求证:AP平面MBD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1 , F2分别是椭圆 的左、右焦点F1 , F2关于直线x+y﹣2=0的对称点是圆C的一条直径的两个端点.
(1)求圆C的方程;
(2)设过点F2的直线l被椭圆E和圆C所截得的弦长分别为a,b.当ab最大时,求直线l的方程.

查看答案和解析>>

同步练习册答案