A. | -1 | B. | 0 | C. | 1 | D. | 2 |
分析 由已知得f(1+x)=f(1-x)=-f(x-1),从而f(x+2)=-f(x),f(x+4)=-f(x+2)=f(x),由此根据当x∈[-1,1]时,f(x)=x2,能求出f(2015)的值.
解答 解:∵定义在R上的函数y=f(x)满足:f(-x)=-f(x),
∴f(1+x)=f(1-x)=-f(x-1),
∴f(x+2)=-f(x),
∴f(x+4)=-f(x+2)=f(x),
∵当x∈[-1,1]时,f(x)=x2,
∴f(2015)=f(2016-1)=f(-1)=-f(1)=-1.
故选:A.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
P(K2≥K) | 0.050 | 0.010 | 0.001 |
K | 3.841 | 6.635 | 10.828 |
A. | 有99%以上的把握认为“爱好该项运动与性别有关” | |
B. | 有99%以上的把握认为“爱好该项运动与性别无关” | |
C. | 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关” | |
D. | 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{7}$ | B. | $\sqrt{3}$ | C. | $\sqrt{5-2\sqrt{3}}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{3π}{4}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com